These problems are for your own benefit, please do not submit solutions for grading.

1) Consider the surface \(S \subset \mathbb{R}^3 \) given by \(x^3 + y^4 + z^5 + e^z = 3 \). Explain why near the point \(p = (1, 1, 0) \) we can write \(S \) as a graph \(z = f(x, y) \), for some smooth function \(f(x, y) \). Then calculate \(\frac{\partial f}{\partial x} \) and \(\frac{\partial f}{\partial y} \) at \((1, 1) \).

2) Continuing from problem 1, use the values of these partial derivatives to write down a basis of the tangent plane \(T_pS \). Then express \(T_pS \) in the form \(ax + by + cz = 0 \).

3) Construct an explicit diffeomorphism \(F : S_1 \rightarrow S_2 \) where \(S_1 \) is the cylinder \(x^2 + y^2 = 1 \) and \(S_2 \) is the one-sheeted hyperboloid \(x^2 + y^2 - z^2 = 1 \).