These problems are for your own benefit, please do not submit solutions for grading.

1) Let $U \subset \mathbb{R}^2$ be open and connected, and let $\varphi : U \to \mathbb{R}^3$ be a global parametrization of a surface S. Suppose that $\frac{\partial \varphi}{\partial u}$ is independent of u and v. Show that the Gaussian curvature of S is identically zero.

2) Let $U \subset \mathbb{R}^2$ be the unit disc and let $\varphi : U \to \mathbb{R}^3$ be given by $\varphi(u, v) = (u, v, 0)$. Call R the image of φ, which is a regular region in the xy-plane. Verify directly the Gauss-Bonnet formula for R by computing

$$\int_R K dA + \int_{\partial R} \kappa_g ds,$$

and showing that the result matches with what is predicted by Gauss-Bonnet.

3) Let S be the unit sphere in \mathbb{R}^3 and let R be the simple region in S given by

$$R = \{(x, y, z) \in S \mid x, y, z \geq 0\}.$$

Verify directly the Gauss-Bonnet formula for R by computing

$$\int_R K dA + \int_{\partial R} \kappa_g ds + \sum_i \alpha_i,$$

and showing that the result matches with what is predicted by Gauss-Bonnet.