1) Consider the standard covering \(\mathcal{U} = \{ U_0, U_1 \} \) of \(\mathbb{C}P^1 \), where in homogeneous coordinates \([z_0 : z_1]\) we have set \(U_j = \{ z_j \neq 0 \}, j = 0, 1 \), with local holomorphic coordinates \(u = \frac{z_1}{z_0} \) on \(U_0 \cong \mathbb{C} \) and \(v = \frac{z_0}{z_1} \) on \(U_1 \cong \mathbb{C} \). On the overlap \(U_0 \cap U_1 \cong \mathbb{C}^* \) these two coordinates are related by \(v = \frac{1}{u} \). Using the definition, compute the Čech cohomology groups \(H^0(\mathcal{U}, \mathcal{O}) \) and \(H^1(\mathcal{U}, \mathcal{O}) \).

2) Let \(X \) be a compact complex manifold of (complex) dimension \(n \).

 (a) Show that if \(\eta \) is a holomorphic \(n \)-form on \(X \) which is \(d \)-exact, then \(\eta \) is identically zero.

 (b) Show that if \(\gamma \) is any holomorphic \(n-1 \) form on \(X \), then \(\gamma \) is \(d \)-closed.

3) Let

\[
G = \left\{ \begin{pmatrix} 1 & x & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{pmatrix} \middle| x, y, z \in \mathbb{C} \right\},
\]

which is a complex Lie subgroup of \(SL(3, \mathbb{C}) \), biholomorphic to \(\mathbb{C}^3 \), and let

\[
\Gamma = \left\{ \begin{pmatrix} 1 & x & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{pmatrix} \middle| x, y, z \in \mathbb{Z}[i] \right\},
\]

be the subgroup where \(x, y, z \) are Gaussian integers. \(\Gamma \) acts on \(G \) by left multiplication of matrices, the action is free and properly discontinuous, and the quotient \(X = G/\Gamma \) is a compact complex 3-fold (you don’t need to prove these).

 (a) Show that the holomorphic 1-forms \(dx, dy \) and \(dz - xdy \) on \(G \) are \(\Gamma \)-invariant and descend to global holomorphic 1-forms on \(X \).

 (b) Conclude that \(X \) admits a holomorphic 1-form which is not \(d \)-closed. Compare this with problem 2(b).

4) Let \(X \) be a complex manifold, and \(\alpha \) a \((1, 1) \) form on \(X \) which is real (i.e. \(\alpha = \bar{\alpha} \)) and \(d \)-closed. Show that for every \(x \in X \) there exist an open set \(U \ni x \) and a smooth real-valued function \(f \) on \(U \) such that we have

\[
\alpha = i\partial\bar{\partial}f,
\]
on \(U \).