1) Calculate the de Rham cohomology groups of the n-dimensional torus $T^n = S^1 \times \cdots \times S^1$ (n times).

2) Let M, N be two manifolds with finite dimensional cohomology. Prove that

$$\chi(M \times N) = \chi(M)\chi(N),$$

where $\chi(M) = \sum_{i \geq 0} (-1)^i \dim H^i(M)$ is the Euler characteristic.

3) Let G be a (not necessarily connected) compact Lie group with $\dim G > 0$. Show that $\chi(G) = 0$.

4) Let M be a compact orientable n-manifold, with n odd. Show that $\chi(M) = 0$.