1) Let X be a compact complex manifold. Prove that there cannot exist two Kähler metrics ω, ω' on X (no assumption on the cohomology classes) with $\text{Ric}(\omega) > 0$ and $\text{Ric}(\omega') \leq 0$.

2) Let (X, g) be a compact Kähler manifold, and V a holomorphic vector field on X.

 (a) Prove that
 $$\Delta_g |V|^2 = |\nabla V|^2 - \text{Rc}(V, V).$$

 (b) Deduce that if g is Ricci-flat, then every holomorphic vector field on X is either identically zero or never vanishing.

3) Let M, N be (positive-dimensional) compact complex manifolds with $H^1(M, \mathbb{R}) = H^1(N, \mathbb{R}) = 0$ and consider $X = M \times N$. Assume that X admits a Ricci-flat Kähler metric ω. Prove that we must have that
 $$\omega = \pi_M^* \omega_M + \pi_N^* \omega_N,$$
 where ω_M, ω_N are Ricci-flat Kähler metrics on M, N respectively, and π_M, π_N are the two projections.