440-2 Geometry/Topology: Differentiable Manifolds
Northwestern University
Solution of Homework 5

The questions marked with * are a bit harder.

1) Let \(F : M \to N \) be a smooth map between manifolds, and let \(X, Y \in \mathcal{T}(N) \) be two vector fields on \(N \) with the property that there are vector fields \(\tilde{X}, \tilde{Y} \in \mathcal{T}(M) \) with \(dF(\tilde{X}) = X, dF(\tilde{Y}) = Y \). Show that \(dF([\tilde{X}, \tilde{Y}]) = [X, Y] \).

Solution. Given \(p \in M \), the equation \(dF_p(\tilde{X}) = X_{F(p)} \) is clearly equivalent to \(\tilde{X}(f \circ F) = X(f) \circ F \), for all germs \(f \in \mathcal{C}^\infty(F(p)) \), and similarly for \(\tilde{Y} \). Then we have \(\tilde{X}\tilde{Y}(f \circ F) = \tilde{X}(Y(f) \circ F) = (XY(f)) \circ F \), and so \([\tilde{X}, \tilde{Y}](f \circ F) = ([X, Y](f)) \circ F \), which as we said is equivalent to \(dF_p([\tilde{X}, \tilde{Y}]) = [X, Y]_{F(p)} \).

2) As usual identify \(S^1 \subset \mathbb{C} \) with the set of unit complex numbers. In this way, the torus \(S^1 \times S^1 \) can be viewed as a subset of \(\mathbb{C}^2 \). For a given \(\alpha \in \mathbb{R} \), let \(\gamma_\alpha : \mathbb{R} \to S^1 \times S^1 \subset \mathbb{C}^2 \) be given by
\[
\gamma_\alpha(t) = (e^{2\pi it}, e^{2\pi i\alpha t}).
\]

(a) If \(\alpha \in \mathbb{Q} \) show that \(\gamma_\alpha \) induces an embedding of \(S^1 \) into \(S^1 \times S^1 \).

(b)* Is \(\alpha \in \mathbb{R} \setminus \mathbb{Q} \), show that \(\gamma_\alpha \) is an injective immersion, and that its image is dense in \(S^1 \times S^1 \). Deduce that \(\gamma_\alpha \) is not an embedding.

Solution. (a) Clearly the image of \(\gamma_\alpha \) is contained in the torus \(S^1 \times S^1 \). As a curve in \(\mathbb{C}^2 \) we have
\[
\gamma'_\alpha(t) = (2\pi ie^{2\pi it}, 2\pi i\alpha e^{2\pi i\alpha t}),
\]
which is never the zero vector, hence \(\gamma_\alpha \) is an immersion. If we write \(\alpha = p/q \) with \(p, q \in \mathbb{Z} \) coprime, \(q > 0 \) (if \(p = 0 \) we set \(q = 1 \)), then we see that for any given \(t \in \mathbb{R} \), \(\gamma_\alpha(t) = \gamma_\alpha(t + q) \), while \(\gamma_\alpha(t + s) \neq \gamma_\alpha(t) \) for \(0 \leq s < q \).
Therefore γ_α descends to a smooth map from $S^1 = \mathbb{R} / (t \sim qt)$, which is an injective immersion. Its image is the compact subset K of $S^1 \times S^1$ given by the equation $z_1^p = z_2^q$ where $(z_1, z_2) \in \mathbb{C}^2$. Indeed, the image is clearly contained in K, and conversely if $(z_1, z_2) \in \mathbb{C}^2$ satisfy $|z_1| = |z_2| = 1$ and $z_1^p = z_2^q$, write $z_1 = e^{2\pi ia}$, $z_2 = e^{2\pi ib}$, with $0 \leq a, b < 1$, then we must have $pa - qb = \ell \in \mathbb{Z}$. Since p, q are coprime, we can add integers to a, b so that $pa - qb = 0$, and then $\gamma_\alpha(a) = (z_1, z_2)$. As we vary (z_1, z_2) continuously, we can choose a which varies continuously as well, and this shows that the inverse of γ_α, from K to S^1 is continuous, hence γ_α is an embedding.

(b) We have seen in part (a) that γ_α is an injective immersion. Next we show that the image is dense in $S^1 \times S^1$. Consider the subset $\{e^{2\pi in}\}_{n \in \mathbb{Z}}$ of S^1. Since S^1 is compact, there is an accumulation point $z \in S^1$. Given $\varepsilon > 0$ choose integers $n_1 \neq n_2$ with $|e^{2\pi in} - 1| < \varepsilon/2$ for $j = 1, 2$. Then $k = n_1 - n_2$ is a nonzero integer which satisfies

$$|e^{2\pi ik} - 1| = |e^{2\pi i(n_1 - n_2)}| < \varepsilon.$$

Choose now an integer m such that

$$0 < |ak - m| < \frac{1}{2},$$

which is possible (with strict inequalities) since ak is irrational. We have $|e^{2\pi i(ak-m)} - 1| < \varepsilon$. The elementary inequality $|t| \leq |e^{2\pi it} - 1|$ (which holds for $0 \leq t \leq 1/2$), gives us $|ak - m| < \varepsilon$. Let now $p = (e^{2\pi ix}, e^{2\pi iy})$ be any point on $S^1 \times S^1$. For any $n \in \mathbb{Z}$, the Euclidean distance in \mathbb{C}^2 between p and $\gamma_\alpha(x + n)$ is

$$|e^{2\pi i(x+n)} - e^{2\pi iy}| = |e^{2\pi i(b+n\alpha)} - 1|,$$

where $b \in [0, 1)$ is the fractional part of $ax - y$. If we can show that for any $\delta > 0$ there exists $n \in \mathbb{Z}$ such that $|e^{2\pi i(b+n\alpha)} - 1| < \delta$, then we will have proved that the image of γ_α is dense. If $b = 0$, then we have proved this before. If $b > 0$, let $h \in \mathbb{N}$ be such that

$$0 < h \leq \frac{b}{|ak - m|} < h + 1,$$

so

$$0 < b - h|ak - m| < |ak - m| < \varepsilon,$$

which we may assume is less than 1/2. Let $n = \pm hk$, where the sign is chosen so that

$$\pm(ak - m) = -|ak - m|.$$
Then with this choice of n we have

$$|e^{2\pi i (b+n\alpha)} - 1| = |e^{2\pi i (b-h|\alpha k - m|)} - 1| \leq 2\pi (b-h|\alpha k - m|) < 2\pi \varepsilon,$$

thanks to the elementary inequality $|e^{2\pi i t} - 1| \leq 2\pi |t|$ (which holds for $0 \leq t \leq 1/2$). This shows that the image of γ_α is dense in $S^1 \times S^1$.

The map γ_α is not a homeomorphism with its image because its image is dense. Indeed, for $\varepsilon > 0$ consider the interval $(-\varepsilon, \varepsilon) \subset \mathbb{R}$ and its image $\gamma_\alpha((-\varepsilon, \varepsilon))$. This is not an open neighborhood of $\gamma_\alpha(0)$ in the image $\gamma_\alpha(\mathbb{R})$ with the induced topology, since any small enough neighborhood of $\gamma_\alpha(0)$ intersects infinitely many other “sheets” of $\gamma_\alpha(\mathbb{R})$ and its preimage under γ_α has infinitely many other components. Therefore γ_α is not an embedding.

3) Determine explicitly the flow Θ of the vector field

$$X = y \frac{\partial}{\partial x} + \frac{\partial}{\partial y},$$
on $M = \mathbb{R}^2$.

Solution. Let $\gamma(t) = (f(t), g(t))$ be a smooth curve in \mathbb{R}^2. The condition that γ be a flow line for X is

$$\gamma'(t) = X_{\gamma(t)},$$
i.e.,

$$f'(t) = g(t), \quad g'(t) = 1.$$

If we set $\gamma(0) = (x_0, y_0)$, then the solution of the ODE for g is $g(t) = y_0 + t$, and so $f'(t) = y_0 + t$, and $f(t) = x_0 + y_0 t + \frac{t^2}{2}$. In particular we see that X is complete, and its flow $\Theta : \mathbb{R} \times \mathbb{R}^2 \to \mathbb{R}^2$ is given by

$$\Theta(t, x, y) = \left(x + y t + \frac{t^2}{2}, y + t\right).$$

4) Show that every n-manifold M ($n \geq 1$) admits a diffeomorphism $F : M \to M$ which is not the identity.

Solution. Let p be any point in M and let (U, φ) be a chart centered at p with $\varphi(U) = B_1(0) \subset \mathbb{R}^n$. Let $K = \varphi^{-1}(B_{1/2}(0))$, and let g be a cutoff function which is 1 on K and 0 outside U.

If $X = \frac{\partial}{\partial \varphi}$ in this chart (here we use that $n \geq 1$), then $\tilde{X} = gX$ is a well-defined smooth vector field on M, compactly supported in U and which
equals X on K. Let $\theta_t : M \to M$ be the flow of \tilde{X}, which exists for all $t \in \mathbb{R}$ since \tilde{X} is compactly supported hence complete. The point p corresponds to the origin in this chart, and for small positive t we have $\varphi(\theta_t(p)) = te_1$ (where $e_1 = (1, 0, \ldots, 0)$). Therefore $\theta_t(p) \neq p$ for positive small t, and hence θ_t is the desired diffeomorphism.

5) Show that for every n-manifold M ($n \geq 1$) the vector space $\mathcal{T}(M)$ of smooth vector fields on M is infinite dimensional.

Solution. Let p be any point in M and let (U, φ) be a chart centered at p with $\varphi(U) = B_1(0) \subset \mathbb{R}^n$. Let $K = \varphi^{-1}(B_{1/2}(0))$, and let g be a cutoff function which is 1 on K and 0 outside U. If $X = \frac{\partial}{\partial x_1}$ in this chart (here we use that $n \geq 1$), and f is a smooth function on U, then $X_f := fgX$ is a well-defined smooth vector field on M, compactly supported in U and which equals fX on K. A linear relation among vector fields of this type implies the same linear relation for the corresponding functions on the interior of K. Since the vector space of smooth functions on an open set in $\mathbb{R}^n, n \geq 1$, is infinite dimensional, then so is $\mathcal{T}(M)$.