Solve all the problems below. Each problem is worth 10 points.

1) Let \(X \) be a path connected and locally path connected space with \(\pi_1(X,b_0) \) finite. Show that every continuous map \(f : X \to \mathbb{S}^1 \) is nullhomotopic.

Solution. Let \(p : \mathbb{R} \to \mathbb{S}^1 \) be the universal cover. Now \(f_* : \pi_1(X,b_0) \to \pi_1(\mathbb{S}^1,f(b_0)) \) is a homomorphism from a finite group to \(\mathbb{Z} \), hence it is trivial (since \(\mathbb{Z} \) has no nontrivial elements of finite order). Therefore \(f_* \pi_1(X,b_0) \subset p_* \pi_1(\mathbb{R},e_0) \) and so by the lifting property \(f \) admits a lift to \(\tilde{f} : X \to \mathbb{R} \).

Since \(\mathbb{R} \) is contractible, there is a homotopy \(F \) from \(\tilde{f} \) to a constant map, and so \(p \circ F \) is a homotopy from \(f \) to a constant map.

2) Let \(X = \mathbb{S}^1 \times \mathbb{S}^1 \) be the 2-torus, which we embed in \(\mathbb{C}^2 \) as usual by

\[
\mathbb{S}^1 \times \mathbb{S}^1 = \{(z,w) \in \mathbb{C}^2 \mid |z| = 1 = |w|\}.
\]

Let \(f : \mathbb{S}^1 \times \mathbb{S}^1 \to \mathbb{S}^1 \times \mathbb{S}^1 \) be the continuous map given by

\[
f(z,w) = (z^a w^b, z^c w^d),
\]

for some \(a, b, c, d \in \mathbb{Z} \). Compute the induced homomorphism \(f_* \) from \(\pi_1(\mathbb{S}^1 \times \mathbb{S}^1,b_0) \cong \mathbb{Z}^2 \) to itself.

Solution. The inverse of the isomorphism \(\pi_1(\mathbb{S}^1 \times \mathbb{S}^1,b_0) \cong \mathbb{Z}^2 \) is given by \(\mathbb{Z}^2 \ni (m,n) \mapsto \gamma(t) = (e^{2\pi i mt}, e^{2\pi i nt}) \). We have

\[
f \circ \gamma(t) = (e^{2\pi i (am+bn)t}, e^{2\pi i (cm+dn)t}),
\]

and so

\[
f_*(m,n) = (am + bn, cm + dn),
\]

or in matrix form

\[f_* = \begin{pmatrix} a & b \\ c & d \end{pmatrix}.
\]

3) Let \(X \) be the topological space obtained from the (filled) triangle by identifying all of its three sides as shown:

![Diagram](image)

Calculate its fundamental group.

Solution. Let \(U \) be the open set in \(X \) which is the image of almost all the interior of the triangle, and \(V \) the open set which is the image of a small neighborhood of the boundary triangle, so that \(X = U \cup V \), \(U \) and \(V \) are path connected, \(U \) is contractible, \(V \) is deformation equivalent to the image of the boundary triangle, which is homeomorphic to \(\mathbb{S}^1 \), and \(U \cap V \) is path connected and deformation equivalent to \(\mathbb{S}^1 \). Let \(\gamma \) be a loop in \(U \cap V \) which is homotopic to the loop which goes along the boundary triangle once clockwise. Then \([\gamma]\) generates \(\pi_1(V,z_0) \) and \(\pi_1(U \cap V,z_0) \) and if \(i : \pi_1(U \cap V,z_0) \to \pi_1(V,z_0) \), \(j : \pi_1(U \cap V,z_0) \to \pi_1(U,z_0) \) are the homomorphism induced by the inclusions then we have that \(j \) is the trivial homomorphism while \(i([\gamma]) \) is the homotopy class of the path \(\gamma \) in \(V \), which is the class of the image of the loop which goes along the boundary triangle.
once clockwise, and this becomes the class of $[\gamma] * [\gamma] * [\gamma]$ in $\pi_1(V, z_0)$. In other words, we have $i([\gamma])j([\gamma])^{-1} = 3[\gamma]$. By Seifert-van Kampen we have

$$\pi_1(X, b_0) \cong (\pi_1(U, b_0) * \pi_1(V, b_0))/N,$$

where N is the normal subgroup generated by $3[\gamma]$, and so

$$\pi_1(X, b_0) \cong \mathbb{Z}/3\mathbb{Z}.$$

4) Let X be the same space as in problem 3.

(a) Is there a covering space $p : E \to X$ with E path connected and locally path connected, such that p has 2 sheets (i.e. $p^{-1}(x)$ has cardinality 2 for all $x \in X$)?

(b) Is there a covering space $p : E \to X$ with E path connected and locally path connected, such that p has 3 sheets?

Solution. (a) If we had such a covering space then $H = p_{*}(\pi_1(E, e_0))$ would be a subgroup of $\mathbb{Z}/3\mathbb{Z}$ of index 2, which cannot exist since 2 doesn’t divide 3.

(b) We can take E the universal covering of X. To see that this exists, since X is clearly path connected, it’s enough to show that X is locally simply connected, i.e. every point $x \in X$ has a simply connected open neighborhood. This is obvious for all x in the “interior”, while when x is on the boundary, we can construct an open neighborhood of x by taking the 3 rotated copies of x and taking 3 neighborhoods of these copies going into the interior, which after identification become an open neighborhood of x which can be deformation retracted onto a point.