Solve all the problems below. Each problem is worth 10 points.

1) Let \(f : B^2 \to \mathbb{C} \) be a continuous map such that \(f(x) \neq 0 \) for all \(x \in S^1 \subset B^2 \). Define a continuous map \(g : (S^1, 1) \to (S^1, 1) \) (where we are viewing \(S^1 \subset \mathbb{C} \), so 1 is the same as the point \((1, 0) \in S^1 \subset \mathbb{R}^2\)), by

\[
g(x) = \frac{f(x)}{|f(1)|}.
\]

(a) Show that if \(g \neq 0 \) in \(\pi_1(S^1, 1) \) then \(f \) must have a zero in \(B^2 \).

(b) Find an example where \(g = 0 \) in \(\pi_1(S^1, 1) \) and \(f \) has a zero in \(B^2 \).

(c) Find an example where \(g = 0 \) in \(\pi_1(S^1, 1) \) and \(f \) does not have a zero in \(B^2 \).

2) In the same setting as problem 1, suppose \(g \neq 0 \) in \(\pi_1(S^1, 1) \) (so that \(f \) must have a zero in \(B^2 \) by problem 1(a)). Given \(h : B^2 \to \mathbb{C} \) a continuous map such that

\[|h(x)| < |f(x)|,\]

for all \(x \in S^1 \), then \(f + h \) must have a zero in \(B^2 \).

3) Is there a retraction \(r : X \to A \) where \(X = S^1 \times B^2 \) and \(A = S^1 \times S^1 \subset X \) where \(S^1 \subset B^2 \) is the usual inclusion of the circle as the boundary of the disc?

4) Is there a retraction \(r : X \to A \) where \(X = S^1 \times B^2 \) and \(A \subset X \) is the subspace pictured below, which is homeomorphic to a circle \(S^1 \)?