Solve the problems in the space provided below.

1) Let S be the unit sphere in \mathbb{R}^3 and let R be the region in S given by
 \[R = \{(x, y, z) \in S \mid z > 0\}. \]
 Verify directly the Gauss-Bonnet formula for R by computing
 \[\int_R KdA + \int_{\partial R} \kappa_g ds + \sum_i \alpha_i, \]
 and showing that the result matches with what is predicted by Gauss-Bonnet.
2) Let $\varphi : U \rightarrow \mathbb{R}^3$ be a global parametrization of a surface S, which has the property that the coordinate curves $\gamma(u) = \varphi(u, v_0)$, for v_0 fixed are all geodesics, the coordinate curves $\alpha(v) = \varphi(u_0, v)$, for u_0 fixed are all geodesics, and any such curve γ intersects any curve α orthogonally. Prove that S has vanishing Gaussian curvature.