Problems for MATH 446-2, I

1. Represent the universal bundle $E(1, N)$ and the tangent bundle $T_{\mathbf{P}^N}$ on \mathbf{P}^N by a cocycle g_{ij} with respect to the cover $U_i = \{(z_0 : \ldots : z_N) | z_i \neq 0\}$.

2. Classify all real and complex vector bundles on S^1 and S^2 up to isomorphism. Where are the tangent bundles on that list?

3. We have shown in class that the Grassmannian $Gr(n, N)$ is a homogeneous space $GL(n + N)/P$ for some subgroup P. Find a subgroup Z of $GL(n + N)/P$ such that any Schubert cell C is a Z-orbit of an element sP where s is a permutation matrix.