
On noncommutative differential forms

Boris Tsygan

Abstract. We review the topic of noncommutative differential forms, follow-
ing the works of Karoubi, Cuntz-Quillen, Cortiñas, Ginzburg-Schedler, and

Waikit Yeung. In particular we give a new proof of the theorem of Ginzburg
and Schedler that compares extended noncommutative De Rham cohomology

to cyclic homology. This theorem is a stronger version of a theorem of Karoubi.

We also describe an algebraic structure, namely a category in DG cocategories,
that noncommutative forms and other versions of noncommutative calculus are

partial cases of.

1. Introduction

The idea of noncommutative differential geometry is to start with an assocaitive
algebra A and produce invariants that, in the case when A is commutative, give
classical invariants such as differential forms and the De Rham complex. One
way of doing this is to start with invariants from classical homological algebra,
such as Hochschild homology. The relation between these invariants and De Rham
complexes had been known since the early 60s [19], [32]. This idea is the basis of
cyclic homology theory [2], [3], [4], [33].

On the other hand, one can try to define noncommutative differential forms
directly from the algebra A. This idea was present in Connes’ approach from the
very beginning. It was then advanced by Karoubi and by Cuntz-Quilen in [21],
[7]. The relation between the two approaches, one based on Hochschild homology
and the other on noncommutative forms, is strong, deep, and subtle. It had been
clarified gradually, starting from the works mentioned above and then in the articles
by Ginzburg and Schedler [14], [15].

Let us start with noncommutative forms. They are defined for any unital alge-
bra A over a commutative unital ring k as a differential graded algebra (Ω•(A), d)
together with a morphism of graded algebras A → Ω•(A) which is universal with
such property. The De Rham cohomology is not interesting, not even in character-
istic greater than zero. In fact (noncommutative Poincaré lemma), the morphism
k = Ω•(k) → Ω•(A) is a quasi-isomorphism. However trivial this fact is, its mere
generality has some interesting consequences that we will discuss later. For now,
note one nontrivial way of defining De Rham cohomology, namely the noncommu-
tative De Rham complex

(1.1) DR•(A) = Ω•(A)/[Ω•(A),Ω•(A)]
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Let us next recall the original definition of cyclic homology (for Q ⊂ k) [2], [33] as
the homology of the complex

(1.2) A/im(1− τ)
b←− A⊗2/im(1− τ)

b←− . . . b←− A⊗(n+1)/im(1− τ)
b←−

where

τ(a0 ⊗ . . .⊗ an) = (−1)nan ⊗ a0 ⊗ . . .⊗ an−1

and b is the Hochschild differential. This is a chain complex, as opposed to the
noncommutative De Rham complex

DR0(A)
d−→DR1(A)

d−→ . . .
d−→DRn(A)

d−→
which is a cochain complex. The original observation of Connes was that noncomm-
tative higher traces, i.e. linear functionals

DRn(A)/dDRn−1(A)→ k,

are cyclic cocycles, i.e. linear functionals

A⊗(n+1)/(im(1− τ) + im(b))→ k.

Let us modify the cyclic complex a little. Put

Cn(A) = A⊗A⊗n

where A = A/k · 1; there are two differentials

b : Cn(A)→ Cn−1(A); B : Cn(A)→ Cn+1(A)

such that bB +Bb = 0. The reduced cyclic complex of A (i.e. the quotient of (1.2)
by the cyclic complex of k) is quasi-isomorphic to

(1.3) A/([A,A] + k · 1)
b←− C1(A)/BC0(A)

b←− . . . b←− Cn(A)/BCn−1(A)
b←−

It turns out that a complex better compatible to the noncommutative De Rham
complex is the ”dual” cochain complex

(1.4) A/([A,A] + k · 1)
B−→ C1(A)/bC2(A)

B−→ . . .
B−→ Cn(A)/bCn+1(A)

B−→
Namely: over the ground ring k of characteristic zero, ”the original HKR map”

(1.5) HKR0(a0 ⊗ a1 ⊗ . . .⊗ an) =
1

n!
a0da1 . . . dan

is a quasi-isomorphism from (1.4) to the reduced De Rham complex DR•(A)/DR•(k)
(cf. [21]).

Now, both complexes (1.3) and (1.4) are quasi-isomorphic to quotients of the
periodic cyclic complex

(1.6) CCper
• (A) = (C•(A)((u)), b+ uB)

Those two quotients are described in two diagrams before the beginning of Section
4. (We also take a quotient by the complex of k). This suggests that perhaps the
De Rham complex is also a quotient of something larger, and that the De Rham
differential d is also part of a pair of differentials, as is the Hochschild differential
b.

This is indeed the case, as shown by Ginzburg and Schedler in [14], [15].
Things being subtle, there are two versions of that. Let us start with the extended
De Rham complex (Section 4). It is proven in [15] that it is quasi-isomorphic to its
cyclic counterpart. Moreover, the two are quasi-isomorphic as filtered complexes
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(the filtration given by the bicomplex structure). We will present a new proof of
this theorem that, we hope, clarifies the situation and puts it in a more general
homological algebraic context.

The reduced version of the extended De Rham complex is quasi-isomorphic to
the reduced noncommutative De Rham complex. Therefore we recover Karoubi’s
theorem. Noncommutative reduced De Rham cohomology gets identified with the
kernel of the periodicity operator S on reduced cyclic homology as in [21].

Another version of a second differential on noncommutative forms is Ginzburg
and Schedler’s operator ι∆. It is actually the first term of the second differential in
the extended De Rham complex; it acts on usual, not extended, forms. The pairs
(b, B) and (ι∆, d) are indeed intertwined by the HKR map Section 4, but only on
the image of the Cuntz-Quillen projection. As for the complement of this image:
on it, b and d are acyclic whereas B = ι∆ = 0. is acyclic in some sense. This
allows to conclude that in the periodic cyclic complex (1.6) one can replace b+ uB
by ι∆ + ud. Other versions of cyclic homology may also be computed in terms of
ι∆ + ud, in a way that is somewhat more involved.

The last part of the paper (section 10) is devoted to a general algebraic struc-
ture of which noncommutative forms are an example. Together with other examples
they are probably part of a general unified structure. Namely, the structure is of a
category in coalgebras (or more generally in cocategories), and a module in cocat-
egories over it. This structure provides a package for various algebraic properties
of noncommutative versions of forms and multivectors. One example is the Čech-
Alexander complex of an associative algebra, both in the classical commutative
version from crystalline cohomology theory [1], [18] and in the noncommutative
version of Cortiñas [5]. Note that in the noncommutative case, the Čech-Alexander
complex projects directly to the complex of noncommutative forms with the De
Rham differential. Another example (subsection 10.3) is a category in cocategories
whose objects are algebras, and the cocategory of morphisms between two alge-
bras A and B is constructed from Hochschild cochains of A with values in B. The
module in coalgebras puts in correspondence to an algebra A its bar construction.

These examples illuminate how nontrivial algebraic structures appear on Hochschild
cochains, noncommutative forms, etc. One starts with a rigid structure with many
objects and morphisms; everything is rigid up to homotopy. Then one declares all
objects to be the same, and all morphisms to be the identity. Now our homotopies,
in general connecting two different things, start to connect the same thing to it-
self; in other words, they become morphisms or/and cocycles. The first example
(coming from the classical Čech-Alexander complex) is the bar differential. Other
differentials, e.g. B and ι∆ above, also can be obtained this way. In the example of
subsection 10.3, this is how one produces the Gerstanhaber bracket on Hochschild
cochain complexes.

The author is grateful to P. Bressler, A. Gorokhovsky, D. Kaledin, R. Kauf-
mann, M. Rivera, and R. Nest for fruitful discussions, and to E. Getzler, V. Ginzburg,
M. Kontsevich, T. Schedler, and Waikit Yeung for patiently explaining to him var-
ious aspects of their work on noncommutative forms and related topics.

2. Noncommutative forms

Let A be an associative unital algebra over a commutative unital ring k.
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Let Ω•(A) be the graded algebra generated by A and by symbols da, a ∈ A,
linear in a and subject to relations

a) d(ab) = da b+ adb;
b) the unit of A is the unit of Ω•(A).
The grading |a| = 0, |da| = 1 makes Ω•(A) a graded algebra. We define the

differential d : Ω•(A) → Ω•+1(A) as the unique graded derivation sending a to da
and da to zero for all a in A.

We get a DG algebra (Ω•(A), d) together with a morphism of graded algebras
i : A → Ω•(A). It is universal, in the sense that for any DG algebra Ω• together
with a morphism of graded algebras j : A → Ω• there exists unique morphism of
DG algebras f : Ω•(A)→ Ω• such that j = fi.

2.1. Noncommutative Poincaré lemma.

Lemma 2.1. The embedding

Ω•(k)→ Ω•(A)

is an isomorphism on the cohomology of the differential d.

Proof. First note that the naive HKR map

(2.1) A⊗ Ā⊗n → Ωn(A); a0 ⊗ . . .⊗ an 7→ a0da1 . . . dan

is an isomorphism. Indeed, it is clearly surjective, since every product of a′is and
dbj ’s may be always transformed into an element of the image of the map above.
Then observe that there is an associative product on A⊗ Ā•; the DGA Ω•(A) maps
to it by universality, and this map inverts (2.1). We get an isomorphism of algebras
which intertwines d with

a0 ⊗ . . .⊗ an 7→ 1⊗ a0 ⊗ . . .⊗ an
The cohomology of this differential is clearly k. �

Remark 2.2. One application of the noncommutative Poincaré lemma over
Z is Karoubi’s approach to extending De Rham-Sullivan complexes from rational
homotopy theory to more general situations [22]-[28].

3. Noncommutative De Rham complex

Define

(3.1) DR•(A) = Ω•(A)/[Ω•(A),Ω•(A)]

and also

(3.2) DR
•
(A) = DR•(A)/DR•(k)

4. The extended noncommutative De Rham complex

Let t be a formal variable of degree one. Define

(4.1) Ω•t (A) = Ω•(A) ∗ k[t]

(4.2) DR•t (A) = Ω•t (A)/[Ω•t (A),Ω•t (A)]

and also

(4.3) Ω
•
t (A) = Ω•(A) ∗ k[t]/k[t]
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(4.4) DR
•
t (A) = Ω

•
t (A)/[Ω

•
t (A),Ω

•
t (A)]

There is the second grading (by powers of T ) on Ω•t as well as on all the spaces
above. Therefore Ω•t is a bi-graded algebra, and all the above spaces are bi-graded.
For the first grading, |d| = 1 and |t| = 0. For the second, |d| = 0 and |t| = 1. We
denote by Ωp,qt the component whose degree is p with respect to thefirst grading
and q with respect to the second grading. We get similar decompositions for all the
spaces above.

Lemma 4.1.

DRn,0
t = (Ω/[Ω,Ω])n; DRn−1,1

t
∼−→Ωn−1

4.1. The derivation ιt. Let |ω| be the first grading of ω, i. e. |a| = |t| = 0
and |da| = 1. Define the graded derivation of degree −1 with respect to this grading
by

(4.5) ιt(a) = ιt(t) = 0; ιt(da) = [t, a].

This is a bi-homogeneous map of degree (−1, 1) satisfying

ι2t = 0.

We get complexes

(4.6) DRn,0
t

ιt→ DRn−1,1
t

ιt→ DRn−2,2
t

ιt→ . . .
ιt→ DR0,n

t

They are the columns of the double complex

A/[A,A]
d // DR1(A)

d //

ιt

��

DR2(A)
d //

ιt

��

. . .
d // DRn(A)

ιt

��

d //

At // Ω1(A)t
d //

ιt

��

. . .
d // Ωn−1(A)t

ιt

��

d //

AtAt
d // . . .

d// DRn−2,2
t (A) //

. . . . . . //

��
At . . . At

d //

Lemma 4.2. The projection

DR
•
t (A)→ DR

•
(A)

is a quasi-isomorphism.

Proof. By Lemma 2.1 and by the Künneth formula, the rows of the reduced
version of the double complex are acyclic, and the spectral sequence converges. �
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5. Recollection on cyclic homology

Let

(5.1) Cn(A) = A⊗ Ā⊗n

where Ā = A/k · 1. Define

b : Cn(A)→ Cn−1; B : Cn(A)→ Cn+1(A)

(5.2) b(a0⊗. . .⊗an) =

n−1∑
j=0

(−1)ja0⊗. . .⊗ajaj+1⊗. . .⊗an+(−1)nana0⊗. . .⊗an−1

and

(5.3) B(a0 ⊗ . . .⊗ an) =

n∑
j=0

(−1)nj1⊗ aj ⊗ . . .⊗ an ⊗ a0 ⊗ . . .⊗ aj−1

One has

(5.4) b2 = Bb+ bB = B2 = 0

This allows to arrange the terms Cn(A) into a double complex in several different
ways. Start with the periodic cyclic complex

(5.5) CCper
• (A) = (C•(A)((u)), b+ uB)

where u is a formal variable of homological degree −2. Define its subcomplex

(5.6) CC−• (A) = (C•(A)[[u]], b+ uB)

(the negative cyclic complex) and its quotient complex

(5.7) CC•(A) = (C•(A)((u))/uC•(A)[[u]], b+ uB)

(the cyclic complex). The latter looks like

b
��

b
��

b
��

A
B // C1

B //

b

��

. . . . . .
B // Cn

b

��
A

B // . . . . . .
B // Cn−1

b
��

. . .

b
��

A
B // C1

b

��
A
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The closest to the noncommutative De Rham complex is yet another version that
we denote by CD•(A) :

A/[A,A]
B // C1/bC2

B //

b

��

C2/bC3
B //

b

��

. . . // Cn/bCn+1

b

��

B //

A // C1
B //

��

. . .
B // Cn−1

b

��

B //

A
B // . . .

B // Cn−2
//

. . . . . . //

��
A //

6. The extended HKR morphism

Define the map

(6.1) HKRt : CD•(A)→ DR•(A)

as follows. For k ≥ 0, put
(6.2)

(a0 ⊗ . . .⊗ am) 7→ 1

(m+ k)!

∑
a0da1 . . . daj1tdaj1+1 . . . daj2t . . . tdajk+1 . . . dam

where the sum is over all 0 ≤ j1 ≤ . . . ≤ jk ≤ m. The kth row from above in the
(b, B) double complex CD•,•(A) is mapped to the kth row from above in the (ιt, d)

double complex DRt
•,•(A) by means of HKR(k).

Theorem 6.1. The extended HKR map (6.2) is a quasi-isomorphism for every
column and for the total complex. In particular, the homology of the complex (4.6)

at DRn−j,j
t is isomorphic to Hj(A,A).

As a consequence we recover Karoubi’s theorem

Theorem 6.2. The nth cohomology of the relative noncommutative De Rham

complex DR
•
(A) is isomorphic to

Ker(B : HCn(A)→ HCn+1(A))

7. The extended De Rham complex and Hochschild homology

The extended De Rham complex is related to Hochschild homology in two
related ways. First, it is obtained from the tensor algebra of the short bar resolution
of the A-bimodule A. We can perform an analogous construction for the full bar
resolution; we are not sure, however, how to show that the projection to the short
version is a quasi-isomorphism. However, if we perform this analogous construction
in the dual situation to the DG coalgebra Bar(A) instead of the algebra A, what
we will get is essentially the extended De Rham complex. This is strange because
Bar(A) is larger than A, and the full bar construction is larger than the short one.
Such is life in Hilbert’s hotel.
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It is known that Hochschild and cyclic homology of an algebra can be computed
in terms of the dual construction, namely Hochschild and cyclic homology of its bar
construction ([31], [11] ). The Hochschild homology that arises here is not only the
usual H•(A,A) but also the higher H•(A

⊗n,αA
⊗n) for all n, where α is the cyclic

permutation viewed as an algebra automorphism of A⊗n. But this is isomorphic
to H•(A,A). Similarly, its cyclic version is isomorphic to the cyclic homology [20].
This is how we prove Theorem 6.1. We outline the proof in 7.2; full details are in
[30].

7.1. The extended De Rham complex in terms of the short bar res-
olution. Recall the standard bar resolution:

Bn(A) = A⊗A⊗n ⊗A; b′ : Bn(A)→ Bn−1(A)

b′(a0 ⊗ . . .⊗ an+1) =
n∑
j=0

(−1)ja0 ⊗ . . .⊗ ajaj+1 ⊗ . . .⊗ an+1

If we extend this to B−1(A) = A, we get the bimodule resolution of A.
Define

(7.1) Bsh
1 (A) = Ω1

A
∼−→B1(A)/∂B2(A)

Bsh,(0)
• (A) = A;

Bsh,(n)
• (A) = Bsh

• (A)⊗A . . .⊗A Bsh
• (A)

(n-fold tensor product for n ≥ 1);

Bsh,(∗)
• (A) =

⊕
n≥0

Bsh,(n)
• (A)

Then we have

(7.2) DR•t (A)
∼−→Bsh,(∗)

• (A)/[Bsh,(∗)
• (A),Bsh,(∗)

• (A)]

This construction is used in [35] where it is denoted by Υ(∗)(A).

7.2. The extended De Rham complex and the bar construction. Let
DR•t,+(A) be the subcomplex of DR•t (A) spanned by elements whose degree with
respect to t is positive. This subcomplex can be expressed in the form that we are
going to discuss next.

Let us start with any associative unital differential algebra (A, ∂). View A as
a graded algebra. Introduce a new generator ε of degree one and square zero.
Consider the cross product algebra

(7.3) Ã = k[ε] nA
generated by ε and A subject to a relation [ε, a] = ∂a for all a in A.

In other words, Ã is generated by the algebra A and by elements a = εa, a ∈ A,
of degree |a|+ 1, linear in a and subject to relations

(7.4) a · b = ab; a · b = (−1)|a|(ab− ∂a · b); a · b = (−1)|a|−1∂a · b

Now one can consider the reduced cyclic homology HC•(Ã) of the graded algebra

Ã. More precisely, we will compute it using the following specific complex defined
for any A:

(7.5) CC
′
(A) = (Ker(1− t),b′); CC′(A) = CC

′
(A)/CC

′
(k)
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where 1 − t and N are as in the standard (b, b′, 1 − t,N) double complex. (Recall
that

(Ker(1− t),b′) = (Im(N),b′)
∼−→(C(A)/Ker(N),b) = (C(A)/Im(1− t),b)

and therefore CC
′
(A) does compute the cyclic homology).

Consider now a dual picture. Let C be a differential graded counital coalgebra
(C, ∂). For c ∈ C, let c be a formal element of degree |c| + 1, linear in c. These
elements generate the space C which is same as C but with the grading shifted by

one. Let C̃ be the graded coalgebra which is a linear direct sum of C and C. The
comultiplication is as follows:

(7.6) ∆c =
∑

c(1) ⊗ c(2) +
∑

(−1)|c
(1)|∂c(1) ⊗ c(2)

(7.7) ∆c =
∑

c(1) ⊗ c(2) + (−1)|c
(1)|c(1) ⊗ c(2) +

∑
(−1)|c

(1)|∂c(1) ⊗ c(2)

For any counital DG coalgebra C put

(7.8) CC
′
(C) = (Coker(1− t),b′); CC′(C) = Ker(CC

′
(C)→ CC

′
(k))

Lemma 7.1. Let A = k + A be the algebra obtained from an algebra A by

attaching a unit. Then the complex DR•t,+(A) is isomorphic to CC′(B̃ar(A)) where
Bar stands for the usual bar construction (which is a DG coalgebra).

Proof. Take a monomial ω1tω2t . . . ωnt in DRt,+. Identify it with α1 ⊗ α2 ⊗
. . . ⊗ αn in CC′(B̃ar(A)) where αk = (a0|a1| . . . |am) if ωk = a0da1 . . . dam and
αk = (|a1| . . . |am) if ωk = da1 . . . dam. One checks that this gives an isomorphism
of complexes. �

7.3. The filtration on the extended De Rham complex. Consider the
following filtration on noncommutative forms. We say that a monomial

(7.9) α1t . . . tαN t, αj ∈ Ω•(A),

lies in Fp if at least p forms αj are in dΩ•.
We claim that gr∗F (DRt

•(A)) is dual to (7.2) if one replaces the short bar
resolution Bsh by the full bar resolution B and the algebra A by the graded coalgebra
T (A[1]), the free coalgebra of A[1] where A = A/k ·1. (This may sound a bit strange
since full B• is larger than Bsh

• and T (A[1]) is larger than A. Such is life in Hilbert’s
hotel).

More precisely, for any graded coalgebra C, denote

(7.10) C̄•II(C)(0) = CC
•
II(C) = (C̄⊗(•+1))C•+1

with the differential dual to b (or take invariants with the differential dual to b′).
For n > 0

(7.11) C•II(C)(n) = (C̄[−1]⊗• ⊗ C ⊗ . . .⊗ C̄[−1]⊗• ⊗ C)Cn

(the tensor product on the right is n-fold); the differential sends a monomial

(7.12) c
(1)
1 ⊗ . . . c(1)

m1
⊗ x1 ⊗ . . .⊗ c(n)

1 ⊗ . . . c(n)
mn
⊗ xn

to
n∑
i=1

mi∑
j−1

± . . .⊗∆(a
(i)
j )⊗ . . .+

n∑
j=1

(. . .⊗∆′(xj) . . .+ . . .⊗∆′′(xj) . . .)
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where we use the following notation. First,

(7.13) ∆′ : C → C̄[−1]⊗ C; ∆′′ : C → C ⊗ C̄[−1]

is the comultiplication followed by the projection. Furthermore, the second half of
the j = n term is by definition

±x(2)
n ⊗ c

(1)
1 ⊗ . . . c(1)

m1
⊗ x1 ⊗ . . .⊗ c(n)

1 ⊗ . . . c(n)
mn
⊗ x(1)

n

where

∆(x) =
∑

x(1) ⊗ x(2)

To see this, take a monomial

(7.14) α
(1)
1 t . . . α(1)

m1
tdβ1t . . . tα

(n)
1 t . . . α(n)

mn
tdβn

in grn(DR+
t ), and associate to it a monomial (7.14) by the following rule: to a form

a0da1 . . . dak, associate an element (a0| . . . |ak) of T (Ā[1]). To see that, put

(d+Ω)n = dΩn−1, n > 0; (d+Ω)0 = k

and observe that:

(1)

ιt(a0da1 . . . dan) =

n∑
k=1

(−1)k−1(a0da1 . . . dak−1)t(akdak+1 . . . dan)

mod(d+ΩtΩ + Ωtd+Ω)

(2)

ιt(da1 . . . dan) =

n∑
k=1

(−1)k(a1da2 . . . dak)t(dak+1dak+2 . . . dan)+

n∑
k=1

(−1)k−1(da1 . . . dak−1)t(akdak+1 . . . dan) mod(d+Ωtd+Ω)

Now compute the spectral sequence of the filtration F . The first term is the reduced
cyclic cohomology of T (Ā[1]). Since the coalgebra is cofree,

(7.15) HC
•
II(T (Ā[1]))

∼−→
∞⊕
n=1

(Tn(Ā[1]))Cn

By the dual version of [20], all homologies of grnF for n > 0 are isomophic to the
Hochschild cohomology HH•II(T (Ā[1])), which is computed by the short Hochschild
complex

(7.16) C•sh(T (Ā[1])) = (T (Ā[1])
b−→ T (Ā[1])⊗ Ā[1])
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7.4. The spectral sequence of the filtration F . We claim that the dif-
ferential grkFΩmt → grk+1

F Ωm−1
t acts on (7.16) as follows: on T (Ā[1]), by b′; on

Ā[1] ⊗ T (Ā[1]), by b. To see that, we have to compare the short complex to the
higher full complexes. Namely: we have to compute the compositions

(7.17) C•sh(T (Ā[1]))→ C•II(T (Ā[1]))→ C•II(T (Ā[1]))(n)

and

(7.18) CII(T (Ā[1]))(n) → C•II(T (Ā[1]))→ C•sh(T (Ā[1]))

This is done in detail in [30].
This argument computes the E2 term of the spectral sequence for all but two

leftmost columns. As soon as we compute it for those two, we will have the theorem
proven. Indeed, we will know that the extended HKR map from Proposition ?? is
a quasi-isomorphism. Indeed, the truncated Hochschid complex

(7.19) Cn(A)/bCn+1(A)→ Cn−1(A)→ . . .→ C0(A)

has its own filtration

(7.20) Fn−jCj(A) = Cj(A); Fn−j+1Cj(A) = 1⊗ Ā⊗j ;Fn−j+2Cj(A) = 0

It is straightforward that the extended HKR map preserves the filtration. This
finishes the proof of Theorem 6.1 contingent on Theorem 8.4 below.

8. The (ι∆, d) double complex

8.1. The differential ι∆.

Definition 8.1.

ι∆(a0da1 . . . dan) =

n∑
j=1

(−1)n(j−1)[aj , daj+1 . . . dana0da1 . . . daj−1]

This is just the composition

Ωn(A)→ DRn(A)
ιt−→ DRn−1,1(A)

∼−→Ωn−1(A)

First,

(8.1) ι2∆ = [d, ι∆] = d2 = 0

8.2. The Karoubi operator κ. First look at the component of HKRt at
level one. We get from (6.2)

(8.2) HKR(1) =
1

(n+ 1)!
(1 + κ+ . . . κn)

where

(8.3) κ(a0da1 . . . dan) = (−1)n−1dan · a0da1 . . . dan−1

Lemma 8.2. On Ωn one has

ι∆ = (1 + κ+ . . .+ κn−1)b

This follows from HKRt being a morphism of double complexes.
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8.3. The Cuntz-Quillen projection P .

Lemma 8.3.
(κn − 1)(κn+1 − 1) = 0

on Ωn.

This is proven in [7], [14].
We see that (1 − κ)2P (κ) = 0 where P (x) and 1 − x are coprime polynomi-

als. Therefore we can define P to be the projection on Ker(1 − κ)2 along other
eigenspaces as a polynomial in κ. This is the Cuntz-Quillen projection. Put also
P⊥ = 1− P.

8.4. The main result. Here we summarize the main result from [15].
We will use the identification

(8.4) C•(A)
∼−→Ω•(A); a0 ⊗ . . .⊗ an 7→ a0da1 . . . dan

(the crude HKR). We get two pairs of commuting differentials on Ω•(A): one is
(b, B) and the other is (ι∆, d). The comparison between the two is given by the
following

Theorem 8.4. (1) The projections P and P⊥ commute with b, B, ι∆,
and d.

(2)
Ω•(A) = PΩ•(A)⊕ P⊥Ω•(A)

(3) On PΩ•(A): Let (N !)−1 be the operator whose restriction to Ωn(A) is
1
n! Id. Then (N !)−1 intertwines b with ι∆ and B with d.

(4) On P⊥Ω•(A): B = 0; ι∆ = 0; both b and d are contractible.

Another way to express (3): P ◦ HKR(0) intertwines b with ι∆ and B with d
where

(8.5) HKR(0)(a0 ⊗ . . .⊗ an) =
1

n!
a0da1 . . . dan

In particular we get a theorem from [14]:

Theorem 8.5. The periodic cyclic complex (C•(A)((u)), b + uB) is quasi-
isomorphic to (Ω•(A)((u)), ι∆ + ud).

9. The extended noncommutative De Rham complex and the
representation scheme

Here we follow [14], [15], [35]. For an associative algebra A and a natural
number n, let ORepn(A) be the algebra generated by elements ρjk(a), k-linear in
a ∈ A, 1 ≤ j, k ≤ n, subject to relations

ρij(ab) =

n∑
k=1

ρik(a)ρkj(b)

In other words, points of the scheme Repn(A) = Spec(ORepn(A)) are n-dimensional
representations of A.

Let (Ω•Repn(A), d) be the algebraic De Rham complex of ORepn(A). The group

GLn and the Lie algebra gln act on it. Define the Cartan model of the equivariant
De Rham complex

(9.1) Ω•,GLn

Repn(A) = ((Ω•Repn(A)[gl
∗
n])GLn , d+ ιgln)
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Then there is a morphism of complexes

(9.2) DR•t (A)→ Ω•,GLn

Repn(A)

defined on generators by

(9.3) a · db · c 7→ ρij(a) · dρjk(b) · ρki(c);

(9.4) atc 7→
∑
j,k

E∗jk ⊗ ρjk(ca);

and then extended multiplicatively.
This, and Waikit Yeung’s version for multivector fields, provides a bridge be-

tween noncommutative geometry of an algebra and classical geometry of its repre-
sentation scheme.

10. Noncommutative Poincaré lemma and the categorical nature of the
differentials

Lemma 10.1. Let f, g : A → B be two morphism of algebras. Then f and g
induce homotopic morphisms (Ω•(A), d)→ (Ω•(B), d).

Proof. Follows immediately from the noncommutative Poincaré lemma 2.1
�

The homotopies can be easily constructed explicitly, and in more than one way.
Start with

(10.1) Ωn(A)→ ⊕n−1
j=0 Ωj(A)tΩn−1−j(A)

be the differential ιt (4.5) restricted to Ωn(A) (i.e. to the homogenous part of degree
zero in t of Ω•t (A)). We have two morphisms

(10.2) µ1, µ2 : Ωk(A)tΩl(A)→ Ωk+l(B)

(10.3) µ1(ω1tω2) = f(ω1)g(ω2); µ2(ω1tω2) = (−1)klg(ω2)f(ω1)

Lemma 10.2. Both µ1 and µ2 are homotopies between f, g : Ω•(A)→ Ω•(B).

The proof is a direct computation.
Now let A = B and f = g = idA. It follows from

[d, µj ] = f − g
that in this case

[d, µj ] = 0.

We have
µ1 = 0; µ2 = ι∆.

Is there a categorical reason for ι2∆ = 0? Let us first tighten the structure. Namely,
for any f1, . . . , fm : A→ B define

(10.4) µ1(f1, . . . , fm) : Ω•(A)→ Ω•−m+1(B)

as follows. Define

(10.5) ι
(m)
t : Ω•(A)→ Ω•(A)t . . . tΩ•(A)[1−m]

a0da1 . . . dan 7→
∑

1≤j1<...<jm≤m

(−1)j1+...+jm−ma0da1 . . . [t, aj1 ] . . . [t, ajm ] . . . dan

Also put µ1(f) = f.
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Lemma 10.3.
m∑
j=2

(−1)j−1µ1(f1, . . . , f̂j , . . . , fm+1) + [d, µ1(f1, . . . , fm+1)] = 0

The proof is by direct verification.
Let c(A,B) be the category whose objects are morphisms f : A→ B and there

is one morphism between any f and g. Lemma 10.3 states that morphisms µ1 define
a pairing

(10.6) Ω•(A)⊗ ZN(c(A,B))→ Ω•(B)

Here N stands for the nerve, and ZN for the free simplicial Abelian group generated
by the nerve and viewed as a chain complex.

There is also the product

(10.7) ZN(c(A,B))⊗ ZN(c(B,C))→ ZN(c(A,C))

It is defined as follows. For fj : A→ B and gk : B → C,

(10.8) (f1| . . . |fm)(g1| . . . |gn) =
∑
±(. . . |gkfj | . . .)

where the sum is taken over all paths from g1f1 to gnfm using the following two
moves:

from gkfj to gk+1fj or to gkfj+1

Every permutation of fj and gk introduces a factor −1. For example,

(f1|f2)(g1|g2) = (g1f1|g1f2|g2f2)− (g1f1|g2f1|g2f2)

Lemma 10.4. The product (10.7) is associative and compatible with the action
(10.6).

We do not know at the moment if µ2 (and its partial case ι∆) is part of the
structure described above. We know this for another related structure that we are
going to describe next.

10.1. The Čech-Alexander complex. The noncommutative complex Ω•(A)
is a quotient of another important complex:

(10.9) A(n) = A⊗(n+1); ∂̌ : A(n) → A(n+1); ∂̌ =

n+1∑
j=0

(−1)j∂j ;

(10.10) ∂j(a0 ⊗ . . .⊗ an) = a0 ⊗ . . .⊗ 1⊗ aj ⊗ . . .⊗ an
Define

µ(f1, . . . , fm)(a0 ⊗ . . .⊗ an) =∑
±f1(a0)⊗ . . .⊗f1(aj1)f2(aj1+1)⊗ . . .⊗fm−1(ajm−1)fm(ajm−1+1)⊗ . . .⊗fm(an)

The sum is taken over all 0 ≤ j1 < . . . < jm ≤ n− 1. We get the pairing

(10.11) A(•) ⊗ ZN(c(A,B))→ B(•)

Lemma 10.5. The product (10.7) is compatible with the action (10.11).

There is an extra piece of structure here. Namely, the deconcatenation opera-
tion turns both ZN(c(A,B) and

(10.12) Ā(•)[1] = (A(•)/k(•))[1]

into differential graded coalgebras.
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Proposition 10.6. The product (10.7) and the pairing

Ā(•)[1]⊗ ZN(c(A,B))→ B̄(•)[1]

(induced by (10.11)) are morphisms of differential graded coalgebras.

When A = B and f = g = idA then we recover the bar differential

(10.13) µ(id, id)(a0 ⊗ . . .⊗ an) =

n−1∑
j=0

(−1)ja0 ⊗ . . .⊗ ajaj+1 ⊗ . . .⊗ an

The identity µ(id, id)2 = 0 follows from (10.5) though of course it can be checked
directly.

We have constructed a category in differential graded coalgebras; Čech-Alexander
complexes form ”a module in coalgebras” over it. This provides a strong form of
the statement that all morphisms define the same morphism on Čech-Alexander
cohomology.

Remark 10.7. Of course the last sentence above is obviously true because the
embedding k(•) → A(•) is a quasi-isomorphism. (In fact, for any section s : A→ k
of the embedding k → A, the map

(10.14) a0 ⊗ . . .⊗ an 7→ s(a0)a1 ⊗ . . .⊗ an
is a homotopy between that embedding and the identity). There are cases, however,
when we can modify the complex and then its cohomology becomes interesting. For
example, let A be a finitely generated commutative algebra. Let π : P → A be an
epimorphism where P is a polynomial algebra in finitely many variables. Let I be

the kernel of π. Denote by P̂ (n) the I(n)-adic completion of P⊗(n+1) where

I(n) = Ker(P⊗(n+1) → A)

In characteristic p one can also take the completed divided powers envelope. Then
the differential ∂̌ and the maps µ(f1, . . . , fm) extend to P (•) while the homotopy
(10.14) does not. For every π : P → A and ρ : Q → B and for every f : A → B

there is a morphism f̃ : P → Q such that ρf̃ = fπ. Therefore the complex P (•)

depends, essentially, only on A. Lemma 10.5 and Proposition 10.6 also provide a
recipe for gluing the complexes P (•) for a sheaf of commutative algebras. This gives
a definition of crystalline cohomology [1], [18].

10.2. Noncommutative Čech-Alexander complex. Now let R be an as-
sociative algebra. Let R(n) be the (n+1)-fold free product of R with itself. (This is
the (n+ 1)-fold coproduct in the category of associative rather than commutative
algebras). One defines the coface maps

(10.15) ∂j : R(n−1) → R(n), 0 ≤ j ≤ n

as follows. We denote by Rk the kth copy of R in the free product. Then ∂j is the
morphism of algebras that sends Rk identically to Rk for k < j and to Rk+1 for
k ≤ j.

Now let R and S be two associative algebras. Let f1, . . . , fm : R → S be
morphisms of algebras. The maps

µ(f1, . . . , fm) : R(n) → S(n−m+1)
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are defined analogously to the above. Namely, for any nondecreasing surjection
σ : {0, . . . , n} → {0, . . . , n−m+ 1} let

h(σ) : R(n) → S(n−m+1)

be the algebra morphism that sends Rk to Sσ(k) by the morphism fk−σ(k)+1. Then

µ(f1, . . . , fm) =
∑

(−1)p(σ)h(σ)

where

p(σ) =

n−m+1∑
l=0

lCard(σ−1({l}))

The coalgebra structure on the bar construction also lifts from the commutative
case. Define for 0 ≤ j < n

∆j,n : R(n) → R(j) ⊗R(n−1−j)

to be the algebra morphism that sends Rk identically to Rk ⊗ 1 for k ≤ j and to
1⊗Rk−j−1 for k > j. Then

(10.16) ∆|R(n) =

n−1∑
j=0

∆j,n

defines a DG coalgebra structure on R(•)[1].

Proposition 10.8. The product (10.7) and the pairing

R̄(•)[1]⊗ ZN(c(R,S))→ S̄(•)[1]

(induced by (10.11)) are morphisms of differential graded coalgebras. They satisfy
the associativity condition when three algebras A, B, C are given.

10.2.1. Noncommutative crystalline cohomology in characteristic zero. Here we
follow Cortiñas [5]. Let A be an associative algebra. Let R→ A be an epimorphism
where R is a free algebra. Let J (n) = Ker(R(n) → A). Let R(•)/[R(•), R(•) ]̂ be the
completion of R(•)/[R(•), R(•)] with respect to the filtration induced by powers of
J (•).

Theorem 10.9. [5] The complex

(10.17) R\
(•)̂= R(•)/[R(•), R(•) ]̂ , ∂̌)

computes the periodic cyclic homology of A.

All the morphisms µ(f1, . . . , fm) extend to the completion. The coalgebra
structure descends to the quotient by commutators. Also, denote

R̄
(•)
\ ̂= R\

(•) /̂k\
(•)̂

We get a stronger form of the statement [5] that the cohomology is independent of
the choice of R :

Proposition 10.10. The product (10.7) and the pairing

R̄
(•)
\ ̂⊗ ZN(c(R,S))→ S̄

(•)
\ ̂

(induced by (10.11)) are morphisms of differential graded coalgebras that satisfy
the associativity condition.



ON NONCOMMUTATIVE DIFFERENTIAL FORMS 17

Let us say a few words about the proof of Theorem 10.17. In the commutative
case, the classical proof starts with the Čech-Alexander-De Rham double complex
and shows that its total complex is quasi-isomorphic to both Čech-Alexander and
De Rham complexes. In the noncommutative case, the Čech-Alexander complex
already is a version of the De Rham complex. This is shown by expressing the
algebras R(•) in terms of noncommutative forms (generalizing the case • = 1 due
to Cuntz and Quillen). After that, the theorem follows from Karoubi’s Theorem
6.2 and Goodwillie’s theorem [17].

10.3. Bar construction and Hochschild cochains. There is another, pos-
sibly related, example of the structure discussed above. Namely, replace the addi-
tive category Zc(A,B) by the differential graded category C•(A,B) as follows. Its
objects are morphisms f : A→ B. The complex of morphisms is

(10.18) C•(A,B)(f, g) = C•(A, fBg) = Homk(A⊗•, B),

the Hochschild cochain complex of A with coefficients in B viewed as an A-bimodule
with the action a1 ·b·a2 = f(a1)bg(a2). The composition is given by the cup product.

There are morphisms of DG coalgebras

(10.19) Bar(C•(A,B))⊗ Bar(C•(B,C))→ Bar(C•(A,B))

(10.20) Bar(A)⊗ Bar(C•(B,C))→ Bar(B)

The first one is associative and the two agree with each other. The morphisms are
a categorized version of the morphisms based on brace operations [12], [13]. The
details can be found in [34] and [30].

This one way of saying that algebras form a two-category, i.e. a category in DG
categories: the above says that they form a (strict) category in DG cocategories; one
can apply the bar construction and define a version of a 2-category up to homotopy.

Remark 10.11. One gets a feeling that the algebraic structures described in
(10.6), Propositions 10.6 and 10.10, (10.19), and (10.20) are parts of the same
structure.
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no. 2, 618–626.
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