The asymptotic behaviour of doubly periodic instantons and Stokes structure

Takuro Mochizuki
RIMS, Kyoto University
2012 May

Introduction

Let T be an elliptic curve over \mathbb{C}. For $\lambda \in \mathbb{C}$, let \mathcal{M}^λ denote the moduli space of line bundles of degree 0 with a flat λ-connection.

\[\mathcal{M}^\lambda := \{ (L, \mathbb{D}^\lambda) \mid L \in \text{Pic}_0(T), \mathbb{D}^\lambda : \lambda\text{-connection of } L \}/ \sim \]

A flat λ-connection is a differential operator $\mathbb{D}^\lambda : L \to L \otimes \Omega^1_X$ such that

(i) $\mathbb{D}^\lambda(f s) = \mathbb{D}^\lambda f \otimes s + (\lambda \partial s + \mathcal{D}_s) f \otimes s$ for $f \in \mathcal{C}^\infty(T), s \in \mathcal{C}^\infty(T, L)$,
(ii) $\mathbb{D}^\lambda \mathbb{D}^\lambda = 0$.

The space \mathcal{M}^λ is an affine space bundle over $T^\nu := \text{Pic}_0(T)$.

Goal

1. The behaviour of holomorphic vector bundles on \mathcal{M}^λ around $=0$. (Hukuhara-Turrittin type theorem, Stokes structure,...)
2. Application to instantons on $T^\nu \times \mathbb{C}$.

Vector bundles on \mathcal{M}^λ

Let $T = \mathbb{C}/\Lambda$ for a lattice $\Lambda \subset \mathbb{C}$. Then $T^\nu := \text{Pic}_0(T) \cong \mathbb{C}/\Lambda^\nu$, where $\Lambda^\nu := \{ z \in \mathbb{C} \mid \text{Im}(z) \in \mathbb{R}, \forall \xi \in \Lambda \}$.

The identification is induced by $\mathbb{C} \ni z \mapsto (\zeta + \lambda \partial \zeta, \zeta) \mapsto \zeta \in \Lambda^\nu$.

\mathcal{M}^λ is described as the quotient $\mathcal{M}^\lambda \cong \{ (\xi, \eta) \in \mathbb{C}^2 \}/\sim$,

\[(\xi, \eta) \sim (\xi + \chi, \eta - \lambda \chi) \quad \forall \chi \in \Lambda^\nu \]

The identification is induced by $\mathbb{C} \ni (\xi, \eta) \mapsto (\zeta + \lambda \partial \zeta, \zeta) \mapsto \zeta \in \Lambda^\nu$.

The isomorphism is induced by $\rho_0(\xi) = \exp(2\sqrt{-1}\text{Im}(\xi^2)) = (\zeta^2 - \mathcal{D}_\zeta \zeta)$ on T.

The fibration $\mathcal{M}^\lambda \to T^\nu$ is given by $\zeta \mapsto (\xi, \eta)$.

Hitchin transform

Let $X \subset \mathbb{C}$ be an open subset. We obtain an open subset $\mathcal{V}_0^\lambda(X) \subset \mathcal{M}^\lambda$.

\mathcal{M}^λ is an affine space bundle over $T^\nu \times \mathbb{C}$.

We use the natural coordinate (z, w). We have a natural diffeomorphism $\mathcal{M}^0 \simeq \mathcal{M}^\lambda$ given by

\[(\xi, \eta) = (\xi + \lambda \partial \zeta, \zeta) \mapsto (\xi, \eta) \mapsto (\xi + \lambda \partial \zeta, \zeta) \mapsto \zeta \in \Lambda^\nu \]

The isomorphism is induced by $\rho_0(\xi) = \exp(2\sqrt{-1}\text{Im}(\xi^2)) = (\zeta^2 - \mathcal{D}_\zeta \zeta)$ on T.

The fibration $\mathcal{M}^\lambda \to T^\nu$ is given by $\zeta \mapsto (\xi, \eta)$.

3-flat bundle

A 3-flat bundle on a complex manifold X is a \mathcal{C}^∞-bundle $V \to X$ with a differential operator $D^3 : V \to \Omega^3_X$ such that

\[D^3(f s) = f D^3 s + (\lambda \partial s + \mathcal{D}_s) f \otimes s \quad f \in \mathcal{C}^\infty(X), s \in \mathcal{C}^\infty(X, V) \]

If $X \subset \mathbb{C}$, a flat λ-connection is given by commutative actions D^λ_X and $D^\lambda_{\mathbb{C}}$ satisfying

\[D^\lambda_X(f s) = f D^\lambda_X s + \lambda \partial s, \quad D^\lambda_{\mathbb{C}}(f s) = f D^\lambda_{\mathbb{C}} s + \mathcal{D}_s f \otimes s. \]
Holomorphic vector bundle on \(\Psi_0^{-1}(X) \Rightarrow \) flat \(\lambda \)-connection on \(X \)

From a holomorphic vector bundle \(E \), we obtain a \(\mathcal{E}_X \)-module \(\Psi_0(E) \) on \(X \):

\[
\Psi_0(E)(U) = \{ C^\infty\text{-sections of } E \text{ on } \Psi_0^{-1}(U) \} \quad (U \subset X \text{ open})
\]

It is equipped with the actions of \((1 + |\lambda|^2)\partial_\lambda \) and \((1 + |\lambda|^2)\overline{\partial}_\eta \). They give a flat \(\lambda \)-connection of \(\Psi_0(E) \).

It can be regarded as “a \(\lambda \)-flat bundle of infinite rank”.

We have a natural inclusion

\[
(V, D_\lambda) \subset \Psi_0^\ast \Psi_0^\ast (V, D_\lambda) \cong (V, D_\lambda) \otimes \Psi_0^\ast (\mathcal{O}_\lambda).
\]

The analogy of holomorphic vector bundles on \(\mathcal{M}^\lambda \) and \(\lambda \)-flat bundles on \(\mathcal{C} \) can be more acute around \(\infty \).

Recall \(\mathcal{M}^\lambda \rightarrow T^\infty \) is affine space bundle given by \((\xi, \eta) \mapsto \xi \).

We obtain the natural projective completion \(\overline{\mathcal{M}}^\lambda \), by adding \(\eta = \infty \).

Let \(T^\lambda_\infty \) denote \(\{ \eta = \infty \} \), which is naturally isomorphic to \(T^\infty \).

\[
\overline{\mathcal{M}}^\lambda = \mathcal{M}^\lambda \cup T^\lambda_\infty \quad (\text{set theoretically})
\]

- We will consider vector bundles \(E \) on a neighbourhood of \(T^\lambda_\infty \) such that \(E|_{T^\lambda_\infty} \) is semistable of degree 0.
- \(E \) has a kind of Stokes structure, if \(\lambda \neq 0 \).
 (The case \(\lambda = 0 \) is simpler.)

Example

Let \(C \cong \mathbb{C}/\Lambda \). We use the standard coordinate \(z \) of \(C \).

A finite dimensional \(\mathbb{C} \)-vector space \(V \) induces a \(\mathbb{C}^\infty \)-bundle \(\mathcal{V} := V \times \mathbb{C} \) over \(C \). It has a natural holomorphic structure

\[
\overline{\mathcal{V}}_0 : \mathcal{C}^\infty(C, \mathcal{V}) \longrightarrow \mathcal{C}^\infty(C, \mathcal{V} \otimes \Omega^1_{\mathbb{C}})
\]

\[f \in \text{End}(\mathcal{V}) \] gives a holomorphic structure \(\overline{\mathcal{V}}_0 + f d\mathcal{V} \) of \(\mathcal{V} \).

Lemma \((\mathcal{V}, \overline{\mathcal{V}}_0 + f d\mathcal{V})\) is semistable of degree 0.

Conversely, any semistable vector bundle of degree 0 can be expressed as above (not uniquely).

Let \(E_0 \) be a semistable bundle of degree 0 on \(C \). We have the Fourier-Mukai transform \(\text{FM}(E_0) \) on \(\mathcal{C}^\prime = \text{Pic}_0(C) \).

Fourier-Mukai transform (the simplest case)

We have the universal line bundle \(\mathcal{L} \) (Poincaré bundle) on \(C \times \mathcal{C}^\prime \).

Let \(\mathcal{P}_0, \mathcal{P}_1, \mathcal{P}_2 : C \times \mathcal{C}^\prime \rightarrow \mathcal{C}^\prime \) be the projections.

For an \(\mathcal{O}_C \)-module \(M \), we obtain \(\text{FM}(M) := p_2 \ast (p_1 \otimes \mathcal{L}) \ast M \) in \(D^b(\mathcal{C}^\prime) \).

If \(M \) is a semistable bundle of degree 0, \(\text{FM}(M) \) is a torsion \(\mathcal{O}_C \)-module.

Let \(t : \mathcal{C}^\prime \longrightarrow \mathcal{C}^\prime \) be given by \(t(\xi) = -\xi \). We set

\[
s(E_0) := \text{the support of } t^\ast \text{FM}(E_0)
\]

If \(E_0 = (\mathcal{V}, \overline{\mathcal{V}}_0 + f d\mathcal{V}) \), \(s(E_0) = \{ \text{the eigenvalue of } f \text{ modulo } \Lambda^\prime \} \).

\((\mathcal{V}, f)\) is unique up to isomorphisms, once we fix a lift of \(s(E_0) \) to \(\mathcal{C}^\prime \).
An equivalence

Let $\tilde{s} \subset \mathbb{C}$ be a finite set such that $\tilde{s} \longrightarrow \mathbb{C} \longrightarrow \mathbb{C}^*$ is injective. The image is denoted by s.

$VB^0_\lambda (C,s) :$ Semistable bundles E_0 of degree 0 on C such that $s(E_0) \subset s$.

$VS^\lambda (\tilde{s}) :$ Vector spaces with an endomorphism (V,f) such that the eigenvalue of $f \in \tilde{s}$

The construction $(V,f) \longrightarrow (V,\frac{\partial}{\partial y} + f dy)$ gives an equivalence of categories

$VS^\lambda (\tilde{s}) \cong VB^0_\lambda (C,s)$

This equivalence will be enhanced later.

Construction Ψ_1^λ

It is convenient to consider the C^∞-maps $\Psi_1 : \mathbb{A}^\lambda \longrightarrow C$ or $\Psi_1 : \mathbb{A}^\lambda \longrightarrow \mathbb{P}^1$ given by $\Psi_1(\xi,\eta) = (1 + |\lambda|^2)\Psi(\xi,\eta) = \eta + \lambda \xi^2$.

For $(\tau,y) = (\xi,\eta + \lambda \xi^2)$, we have

$\overline{\sigma}_s = \overline{\sigma}_s + \lambda \sigma_0$, $\overline{\sigma}_q = \overline{\sigma}_s$

Let $X \subset C$ be open.

λ-flat bundle on $X \Longrightarrow$ holomorphic bundle on $\Psi_1^\lambda (X)$

Let $(\mathbb{D}^\lambda (V))$ be a λ-flat bundle on X. A C^∞-bundle $\Psi_1^\lambda (V)$ on $\Psi_1^\lambda (X)$ is equipped with an induced flat λ-connection $\mathbb{D}^\lambda (V)$ (with respect to (τ,y)). Then,

$\overline{\sigma}_s = \mathbb{D}^\lambda_0 + \mathbb{D}^\lambda_1$, $\overline{\sigma}_q = \mathbb{D}^\lambda_0$

gives a holomorphic structure on $\Psi_1^\lambda (V)$. The holomorphic bundle is denoted by $\Psi_1^\lambda (V,\mathbb{D}^\lambda)$.

An analogy around infinity

$\mathbb{M}^\lambda = \mathbb{A}^\lambda \cup \mathbb{T}^\lambda$

The map $\Psi_0 : \mathbb{M}^\lambda \longrightarrow C$ is extended to a C^∞-map $\Psi_0 : \mathbb{M}^\lambda \longrightarrow \mathbb{P}^1$. Let \mathcal{X} be a neighbourhood of ∞ in \mathbb{P}^1.

We would like to explain the analogy between

- holomorphic vector bundles E on $\Psi_0^\lambda (\mathcal{X})$ such that $E_{|\mathcal{X}}$ are semistable of degree 0,
- vector bundles V on \mathcal{X} with a meromorphic λ-connection \mathbb{D}^λ such that $\mathbb{D}^\lambda (V) \subset V \otimes dw$.

(Note that dw has pole of order 2 at ∞.)

Comparison of Ψ_0^λ and Ψ_1^λ

Ψ_0^λ and Ψ_1^λ are essentially the same construction. (They are the same in the case $\lambda = 0$.)

Let $X_0 := \{ |w| > R \}$ and $X_1 := \{ |w| > (1 + |\lambda|^2)R \}$.

- We have $\Psi_0^\lambda (X_0) \cong \Psi_1^\lambda (X_1)$.
- a λ-flat bundle on X_0 \longrightarrow a λ-flat bundle on X_1.

Let (V,\mathbb{D}^λ) on X_0. By the parallel transport of the flat λ-connection along the segment connecting w and $(1 + |\lambda|^2)w$, we obtain an isomorphism $V_{w'} \cong V_{(1 + |\lambda|^2)w}$.

It induces a C^∞-isomorphism $\Psi_0^\lambda (V) \cong \Psi_1^\lambda (V)$.

We can check that it is holomorphic by an easy computation.

Extension at ∞.

Let $\mathcal{X} := \{ y \in \mathbb{C} | |y| \geq R \} \cup \{ \infty \}$.

Meromorphic λ-connection on $\mathcal{X} \Longrightarrow$ holomorphic vector bundle on $\Psi_1^\lambda (\mathcal{X})$

Let V be a holomorphic vector bundle on \mathcal{X} with a meromorphic flat λ-connection \mathbb{D}^λ such that $\mathbb{D}^\lambda (V) \subset V \otimes dw$. The construction Ψ_1^λ gives a holomorphic bundle $\Psi_1^\lambda (V,\mathbb{D}^\lambda)$ on $\Psi_1^\lambda (\mathcal{X})$.

Let v_1,\ldots,v_n be a holomorphic frame of V. Let λ be determined by $\mathbb{D}^\lambda (v_1,\ldots,v_n) = (v_1,\ldots,v_n)A(y^{-1})$, which is holomorphic in y^{-1}. We set $\tilde{v}_i := \Psi_1^\lambda (v_i)$.

Then,

$\overline{\sigma}_s (\tilde{v}_1,\ldots,\tilde{v}_n) = 0$, $\overline{\sigma}_q (\tilde{v}_1,\ldots,\tilde{v}_n) = (\overline{\tilde{v}_1},\ldots,\overline{\tilde{v}_n})A(y^{-1})$.

Remark Ψ_0^λ is not naturally extended on \mathcal{X}. We use Ψ_0^λ in relation with instances.
For any small sector \(S \) where \(\Sigma \) is an isomorphism, Laumon, Malgrange, Sabbah, etc. studied by Arinkin, Beilinson, Bloch, Deligne, Esnault, Fang, Fu, Graham-Squire, etc.

If we take an appropriate extension \(K \subset K_\ell \subset (\ell^\mathbb{Z}) \), we have a formal isomorphism
\[
V \otimes K_\ell \simeq \bigoplus_{a \in \ell^\mathbb{Z}} L_a \otimes R_a
\]
where \(R_a \) are regular singular, and \(L_a = C((\ell^{1/\ell}))a \) such that \(\partial_a R_a = \tau_a \partial_a a \).

The set \(\{ a \neq 0 \} \) and the formal monodromy of \(R_a \) are the important invariants for the differential module \(V \).

By the equivalence \(\text{Conn}^1(\tilde{\mathcal{X}}) \simeq \text{VB}_2(\mathcal{X}, \mathfrak{a}) \), these invariants are transferred to objects in \(\text{VB}_2(\mathcal{X}, \mathfrak{a}) \).

Formal case

Let \(\tilde{\mathcal{X}} \) denote the formal completion of \(\mathbb{P}^1 \) at \(\infty \). Let \(\mathcal{A} = \mathcal{A}^1 \) denote the formal completion of \(\mathcal{X}^1 \) along \(T^1 \). We have the formal version of the functor \(\Psi^1_\mathcal{A} \).

Theorem \(\Psi^1_\mathcal{A} : \text{Conn}^1(\tilde{\mathcal{X}}, \mathfrak{a}) \to \text{VB}_2^1(\mathcal{X}, \mathfrak{a}) \) is an equivalence.

It might be useful to describe the behaviour of a holomorphic vector bundle on \(\mathcal{A} \) around \(T^1 \).

"Local Fourier transform and Stationary phase formula" (Interlude)

Recall the simplest version of the generalized Fourier-Mukai transform due to Laumon-Rothstein.

Over \(T \times \mathbb{A}^1 \), we have a universal family of line bundles \(\mathcal{X} \) with a family of flat \(\lambda \)-connections \(\mathbb{A}^1 : \mathcal{X} \to \mathcal{X} \otimes \Omega^1_{T \times \mathbb{A}^1} \).

Let \(T \to T \times \mathbb{A}^1 \) be the projections.

For a meromorphic \(\lambda \)-flat bundle \((M, \mathcal{D}^1) \) on \(T \), we obtain
\[
\text{FM}^1_\mathcal{A}(M) := \mathcal{P}^2_\mathcal{A}(M^1)(\mathcal{X}, \mathbb{A}^1)] \in \mathcal{D}^1_\mathcal{A}(\mathcal{O}_{T^1})
\]

If \(M \) is simple with \(\text{rank} M \neq 1 \), \(\text{FM}^1_\mathcal{A}(M) \) is an algebraic vector bundle on \(\mathbb{A}^1 \).

Hence, it naturally gives a locally free \(\mathcal{D}^1(\mathcal{O}_{T^1}) \)-module.

An explicit stationary phase formula for \(\text{FM}^1_\mathcal{A} \).

Let \((M, \mathcal{D}^1) \) be a meromorphic \(\lambda \)-flat bundle on \(T \). For simplicity, we assume that \((M, \mathcal{D}^1) \) is simple with \(\text{rank} M = 1 \). We obtain a locally free \(\mathcal{D}^1(\mathcal{O}_{T^1}) \)-module \(\text{FM}^1_\mathcal{A}(M, \mathcal{D}^1) \) on \(\mathcal{A} \).

Let \(s \subset T \) be the set of poles of \((M, \mathcal{D}^1) \).

Theorem
- There exists a lattice \(E \subset \text{FM}^1_\mathcal{A}(M, \mathcal{D}^1) \) such that \(E \in \text{VB}_2^1(\mathcal{X}, \mathfrak{a}) \).
- The formal completion \(\text{FM}^1_\mathcal{A}(M, \mathcal{D}^1) \) depends only on the formal completion of \((M, \mathcal{D}^1) \) along the poles.
- The corresponding object in \(\text{Conn}^1(\tilde{\mathcal{X}}, \mathfrak{a}) \) is described by the stationary phase formula of local Fourier transform.

Classical Hukuhara-Levelt-Turrittin decomposition

Let \(K = C((\ell^1)) \) be the field of Laurent power series. Let \(V \) be a differential \(K \)-vector space. If we take an appropriate extension \(K \subset K_\ell \subset (\ell^\mathbb{Z}) \), we have a formal isomorphism
\[
V \otimes K_\ell \simeq \bigoplus_{a \in \ell^\mathbb{Z}} L_a \otimes R_a
\]
where \(R_a \) are regular singular, and \(L_a = C((\ell^{1/\ell}))a \) such that \(\partial_a R_a = \tau_a \partial_a a \).

The set \(\{ a \neq 0 \} \) and the formal monodromy of \(R_a \) are the important invariants for the differential module \(V \).

By the equivalence \(\text{Conn}^1(\tilde{\mathcal{X}}) \simeq \text{VB}_2(\mathcal{X}, \mathfrak{a}) \), these invariants are transferred to objects in \(\text{VB}_2(\mathcal{X}, \mathfrak{a}) \).

Classical Fourier transform

We have a line bundle with a flat connection \((\mathcal{E} \subset \mathcal{C}, \mathcal{D} + d(\mathcal{L})) \) on \(\mathcal{C} \times \mathcal{C} \).

For a meromorphic flat bundle \((M, \mathcal{D}^1) \) on \(\mathcal{C} \), we have
\[
\mathfrak{F}(M, \mathcal{D}^1) := \mathcal{P}^2_\mathfrak{C}(M) \otimes (\mathcal{C}, \mathcal{D}^1)] \in \mathcal{D}^1_\mathfrak{C}(\mathfrak{C})
\]

For \(\mathfrak{e} \), a local Fourier transform and an explicit stationary phase formula were studied by Arinkin, Bellinison, Bloch, Deligne, Esnault, Fang, Fu, Graham-Squire, Laumon, Malgrange, Sabbah, etc.

The corresponding object in \(\text{Conn}^1(\tilde{\mathcal{X}}) \) is the equivalence \(\text{Conn}^1(\tilde{\mathcal{X}}) \simeq \text{VB}_2(\mathcal{X}, \mathfrak{a}) \).

Asymptotic analysis

We come back to the study of \(E \in \text{VB}_2^1(\mathcal{X}, \mathfrak{a}) \), where \(X = \{ y \in C \mid |y| \geq R \} \).

\(X = X \cup \{ \infty \} \) and \(\mathcal{A} = \mathcal{A}^1(\mathfrak{C}) \).

There exists \((V, \mathcal{D}^1) \in \text{Conn}^1(\tilde{\mathcal{X}}, \mathfrak{a}) \) such that
\[
\Psi^1_\mathcal{A}(V, \mathcal{D}^1) \simeq E \mathcal{D}^1.
\]

(1)

As in the case of meromorphic flat bundles, the isomorphism is not convergent, in general.

Theorem For any small sector \(S \subset X \), there exists a holomorphic isomorphism \(E\Psi^1_\mathcal{A}(S) \simeq \Psi^1_\mathcal{A}(V, \mathcal{D}^1)\Psi^1_\mathcal{A}(S) \), asymptotic to (1).

(1) is an admissible trivialization in this talk.

A sector is \(S = \{ w \in C \mid |w| \geq R, \theta_0 \leq \arg(w) \leq \theta_1 \} \).

This is an analogue of the classical asymptotic analysis for meromorphic flat bundles.
For simplicity, we assume $\{V, D^\beta\} = \oplus_{\beta \in \mathbb{C}} (V, D^\beta)$ for $(V, D^\beta) \in \mathbb{C}^{1}(\mathcal{X}, \partial)$. Let v_1, \ldots, v_δ be a frame of V_α, obtained from frames of V_{β}, $v_1 \in V_{\beta}$. Let $U \subset S$ be any open subset. A C^∞-section f of $\Psi^1(V, D^\beta)$ on $\Psi^1(U)$ is expressed as

$$f = \sum_{\beta} f_\beta \varphi_\beta(d^\beta y).$$

We set $\mathcal{F}^{(j)}(\Psi^1(V)(U)) := \{ f : \mathcal{F} \rightarrow \mathbb{C} \}$ with \mathcal{F} being a field.

We define a filtration $\mathcal{F}^{(j)}(\Psi^1(E)(\beta))$ by using an admissible trivialization.

Proposition

- The filtration is independent of the choice of an admissible trivialization. It is characterized in terms of the growth order.
- The filtration is preserved by the λ-connection.
- For $S \subset X$, we have $\mathcal{F}^{(j)}(\Psi^1(V)(\beta)) \subset \mathcal{F}^{(j)}(\Psi^1(E)(\beta))$.
- We put $\mathcal{F}^{(j)}(\Psi^1(E)(\beta)) = \mathcal{F}^{(j)}(\Psi^1(V)(\beta)) \mathcal{F}^{(j)}(\Psi^1(E)(\beta))$.

We obtain a function $\mathcal{G}^{(j)}(\Psi^1(E)_\beta) : \mathbb{R}^{\mathbb{C}}(\mathbb{C}) \rightarrow \mathcal{F}^{(j)}(\mathbb{C}, \partial \mathcal{X})$ for $\alpha = \partial \beta + \lambda \beta$.

$\mathcal{G}^{(j)}(\Psi^1(E)_\beta)$ may have non-trivial Stokes structure. It is not necessarily isomorphic to (V, D^β).

We have a similar classical construction $\mathcal{G}^{(j)} : \mathbb{R}^{\mathbb{C}}(\mathbb{C}) \rightarrow \mathcal{F}^{(j)}(\mathbb{C}, \partial \mathcal{X})$ for $\alpha = \partial \beta$. We have $\mathcal{G}^{(j)}(\Psi^1(E)_\beta) = \mathcal{G}^{(j)}(\Psi^1(E)_\beta)$.
Application to instantons on $T^\vee \times \mathbb{C}$

Instanton

We use the metric $dz \, dz + dw \, dw$ on $T^\vee \times \mathbb{C}$. Let $X := \{ w \in \mathbb{C} \mid |w| \geq R \}$. Let E be a C^∞-bundle on $\Psi_0^n(X) = T^\vee \times X$ with a hermitian metric h and a unitary connection ∇. The curvature of ∇ is denoted by $F(\nabla)$.

The connection ∇ is called self-dual, if $-F(\nabla) = F(\nabla)$, where \ast denotes the Hodge star operator. In this case, (E,∇,h) is called an instanton.

It is equivalent to the following:

- The $(0,1)$-part of ∇ gives a holomorphic structure.
- For the expression $F(\nabla) = F_3 dz \wedge dw + F_0 (dz \wedge dw) + F_{1\bar{1}} dz \wedge d\bar{w} + F_{00} dw \wedge d\bar{w}$, we have $F_{\bar{3}} + F_{3\bar{3}} = 0$.

We would like to explain how to use the Stokes structure of vector bundles on $T^\vee \times X$ for the study of instantons on \mathbb{A}^2 such that $F(\nabla)$ is L^2.

Nahm transform

For a closed subgroup $\Gamma \subset \mathbb{R}^3$, let $\Gamma^\vee := \{ \chi \in (\mathbb{R}^3)^\vee \mid \chi(\Gamma) \subset \mathbb{Z} \}$.

It is believed and established in some degree

\[
\begin{pmatrix}
\text{\Gamma-equivariant instanton} \\
\text{satisfying some condition} \\
\text{with some singularity}
\end{pmatrix} \quad \longleftrightarrow \quad \begin{pmatrix}
\text{\Gamma'-equivariant instanton} \\
\text{satisfying some condition} \\
\text{with some singularity}
\end{pmatrix}
\]

An instanton on $T^\vee \times \mathbb{C}$ is Γ^\vee-equivariant instanton.

- ADHM construction (Atiyah-Drinfeld-Hitchin-Manin) in the case $\Gamma = \{ 1 \}$ and $\Gamma^\vee = \mathbb{R}^3$.
- Nahm studied the case $\Gamma = \mathbb{R}$ and $\Gamma^\vee = \mathbb{R}^3$. It was refined by Hitchin and Nakajima.

Since then, the other cases were also studied by many people.

Harmonic bundle

Let (E,∇,h) be an instanton on $T^\vee \times X$ which is T^\vee-equivariant.

- We obtain a C^∞-bundle E_1 on X with a hermitian metric h_1 such that $\Psi_0(E_1,h_1) = (E,h)$.
- We also have a unitary connection ∇_1 of (E_1,h_1) such that $\Psi_0(\nabla_1)(v) = \nabla(v)$ for $v = a \delta_i + b \psi_i$.
- Because ∇ is T^\vee-equivariant, $\nabla - \Psi_0(\nabla_1) = \nabla_1 + f_d$ for $f \in \text{End}(E_1)$.

The anti-self duality condition is reduced to the Hitchin equation

$$ F(\nabla_1) + [f dw, f'] d\bar{\sigma} = 0 $$

$(E_1,\nabla_1, f dw)$ with the metric h called a harmonic bundle, where ∇_1 is the $(0,1)$-part of ∇.

Hitchin

T^\vee-equivariant instanton on $T^\vee \times X$ is equivalent to a harmonic bundle on X.

What I would like to do?

The case $\Gamma = \mathbb{A}^1$ and $\Gamma^\vee = \mathbb{A} \times \mathbb{C}^2$ was previously studied by Jardim collaborated with Biquard. They established the Nahm transform between

- Harmonic bundles on T with tame singularity.
- Instantons on $T^\vee \times X$ satisfying the quadratic decay condition. i.e., $|F(\nabla)| = O(|w|^{-2})$ with respect to h and $dz \wedge dw$.

My goals

1. Refine the condition from “quadratic decay” to “L^2”, and establish the correspondence between
 - Harmonic bundles on T with wild singularity
 - Instantons on $T^\vee \times X$ such that $F(\nabla)$ is L^2.
 (We do not explain this anymore in this talk.)
2. Refine the study by using the twistor viewpoint.
 - Stokes structure naturally appears.
 - We obtain wild harmonic bundle as a graduation of instanton with respect to the Stokes structure.

Let $\mathbb{C} \times \mathfrak{T} \longrightarrow T \times \mathfrak{T}$ be the morphism induced by a universal covering $\mathbb{C} \longrightarrow T$. We fix a lift $\mathfrak{X} \subset \mathbb{C} \times \mathfrak{T}$ of \mathfrak{T}, and put $z := \pi(\mathfrak{X} \cap \{ \{w\} \})$.

Lemma

$\exists R > 0$ such that $(E,\nabla)_{|T^\vee \times \{w\}}$ are semistable of degree 0 for any $w \in X$ with $|w| > R$.

We may assume that $(E,\nabla)_{|T^\vee \times \{w\}}$ are semistable of degree 0 from the beginning.

By the relative Fourier-Mukai transform, we obtain a coherent sheaf $FM(E)$ on $T \times X$. The support $\mathfrak{X} \subset T \times X$ is relatively 0-dimensional over X.

Proposition

\mathfrak{X} is naturally extended to a subvariety \mathfrak{X} in $T \times \mathfrak{T}$.

Let $\mathfrak{X} \subset \mathfrak{T}$ be a morphism induced by a universal covering $\mathbb{C} \longrightarrow T$. We fix a lift $\mathfrak{X} \subset \mathbb{C} \times \mathfrak{T}$ of \mathfrak{T}, and put $z := \pi(\mathfrak{X} \cap \{ \{w\} \})$.

Lemma

$\exists (V^0,D^0) \in \text{Conn}(\mathfrak{T},\mathfrak{T})$ such that $\Psi_0(V^0,D^0) = (E,\nabla)$.

We obtain the following theorem.

Theorem

We have an induced harmonic metric h_0 of (V^0,D^0), for which

$$ \Psi_0(h_0) - h = O(\exp(-C|w|^2)) $$

for some $C,\delta > 0$.

We would like to explain how to obtain a harmonic bundle (V^0,D^0,h_0), or equivalently T^\vee-equivariant instanton $\Psi_0(V^0,D^0,h_0)$, by using the previous consideration on the Stokes structure of objects in $\text{VB}_0(\mathfrak{T})$.
Deligne-Hitchin space
We recall the construction of Deligne-Hitchin space

- We have the natural family $\mathcal{M} \rightarrow \mathbb{C}$ such that the fiber $\mathcal{M} \times \mathbb{C} \{\lambda\}$ is \mathcal{M}_λ.
- We also have the natural family $\mathcal{M}^\dagger \rightarrow \mathbb{C}$ such that the fiber $\mathcal{M}^\dagger \times \mathbb{C} \{\mu\}$ is the moduli of line bundles with flat μ-connection on T', where T' denotes the conjugate of T.
- We have the natural holomorphic isomorphism $\mathcal{M} \times \mathbb{C} \cong \mathcal{M}^\dagger \times \mathbb{C}$.
- $\lambda^{-1} = \mu$.
- By gluing, we obtain a complex manifold \mathcal{M}_{DH} with a morphism $\mathcal{M}_{DH} \rightarrow \mathbb{P}^1_\mathbf{C}$. (The twistor space of the hyperkähler manifold $T' \times \mathbb{C}$.)

We recall some basic facts.

- We have a C^∞-isomorphism $\mathcal{M}_{DH} \cong \mathbb{P}^1_\mathbf{C} \times T' \times \mathbb{C}$.
- The twistor lines $C_Q := \mathbb{P}^1_q \times \{Q\}$ are complex submanifolds for any $Q \in T' \times \mathbb{C}$.
- We have an anti-holomorphic involution $\sigma : \mathcal{M}_{DH} \rightarrow \mathcal{M}_{DH}$, compatible with $\sigma : \mathbb{P}^1_\mathbf{C} \rightarrow \mathbb{P}^1_\mathbf{C}$ given by $\sigma(\lambda) = -\lambda^{-1}$.

Twistor description of an instanton

- We have the C^∞-map $\Psi_{DH} : \mathcal{M}_{DH} = \mathbb{P}^1_\mathbf{C} \times T' \times \mathbb{C} \rightarrow \mathbb{C}$.
- For $X = \{w \in \mathbb{C} | |w| \geq R\}$, we set $\mathcal{X}_{DH} = \Psi_{DH}(X)$.

Recall the following well known fact.

An instanton on $T' \times X$ is equivalent to a holomorphic vector bundle \mathcal{E}_{DH} on \mathcal{X}_{DH} with a holomorphic pairing $P : \mathcal{E}_{DH} \times \sigma^* \mathcal{E}_{DH} \rightarrow \mathcal{E}_{DH}$ satisfying the following for any $Q \in T' \times X$.

- (\mathcal{E}_{DH}, P_Q) are polarized pure twistor structure of weight 0, i.e., $\mathcal{E}_{DH,Q} : \mathcal{E}_{DH,Q}$ are isomorphic to $\mathcal{O}(n)$, and P_Q induces a positive definite hermitian metric of $H^0(\mathcal{O}(Q))$.

Prolongation

Let (E, h, ∇) be an L^2-instanton on $T' \times X$. Let \mathcal{E} be the corresponding holomorphic vector bundle on \mathcal{X}_{DH}. For $\lambda \in \mathbb{P}^1_\mathbf{C}$, we set $\mathcal{E}_\lambda := \mathcal{E}_\mathbb{C}$.

Proposition (\mathcal{E}_λ, h) is acceptable, i.e., the curvature of (\mathcal{E}_λ, h) is bounded with respect to h and the Poincaré like metric of \mathcal{E}_λ. For each $a \in \mathbb{R}$, we obtain an \mathcal{E}_λ-module $\mathcal{P}_a\mathcal{E}_\lambda$ such that $\mathcal{P}_a\mathcal{E}_{a+1}^\lambda = \mathcal{E}_\lambda$.

Proposition $\mathcal{P}_a\mathcal{E}_\lambda$ is an object in $\mathcal{V}_{\infty}(\mathcal{X}_{DH})$.

Taking Gr

We obtain a vector bundle with a meromorphic flat λ-connection on $\Psi_{\infty}(\mathcal{X}_{\lambda})$.

Proposition $\bigcup_{a \in \mathbb{R}} \mathcal{P}_a\mathcal{E}_\lambda$ naturally gives a holomorphic vector bundle \mathcal{E}_λ on $\mathcal{X}_{DH} \cap \mathcal{X}$. (Recall $\mathcal{M}_{DH} = \mathcal{M} \cup \mathcal{M}^\dagger$.)

- By considering the conjugate, we obtain \mathcal{E}_λ on $\mathcal{X}_{DH} \cap \mathcal{X}^\dagger$ over $\mathbb{P}^1_\mathbf{C} \setminus \{0\}$.
- We have a natural isomorphism $\mathcal{E}_\lambda \cap \mathcal{X}^\dagger \cong \mathcal{E}_\lambda \cap \mathcal{X} \cap \mathcal{X}^\dagger$.
- By gluing, \mathcal{E}_λ and $\mathcal{E}_\lambda^\dagger$, we obtain a holomorphic vector bundle \mathcal{E}_{DH} on \mathcal{X}_{DH}.
- We have a naturally induced pairing $P : \mathcal{E}_{DH} \times \sigma^* \mathcal{E}_{DH} \rightarrow \mathcal{E}_{DH}$.

Theorem After X is shrank appropriately, (\mathcal{E}_{DH}, P) gives an instanton. It is T'-equivariant.