Waldhausen S-construction

C-category with a fibrations:
+ - tero object of C (i.e. minimal and final)
Subcategory coC of C (A>>8 morphisms M C)
+ >>A,
$$\forall A$$
; A>>B
 $A^{1,2} \rightarrow B^{2} = A^{1} + B^{-2}$ is a cofibration.
For (C, ∞ C): category FiC
Objects of FiC: A>>B
Morphisms in FiC: $A^{2} \rightarrow B^{1}$
Cofibrations in FiC: $A^{2} \rightarrow B^{1}$
Cofibrations in FiC: $A^{2} \rightarrow B^{2}$
(Ruck: for Ob groups, etc.: these are morphisms
strongly compatible with filtrations:
 $(a', b): f(b) \in A^{2} \Rightarrow b \in A)_{1} \Rightarrow B^{2}/A^{2} \rightarrow B^{1}/A^{1}$
Pules out: A
 $A^{2} \rightarrow B^{2}$

We will use:

SuC =
$$\{ \text{Functors } Ar[n] \rightarrow C \quad (ij) \rightarrow Aij \\ \text{such that:} \\ A_{ij} = * ; \quad A_{ij} \rightarrow A_{ik} \\ A_{ij} \rightarrow A_{ik}; \quad I \qquad \text{is a pushout} \\ A_{ij} \rightarrow A_{ik}; \quad I \qquad \text{is a pushout} \\ * \in J \qquad \text{if } K \\ \text{Secondary}$$

Azz

As we seen above: all SuC are categories w/
cofibrations; all diss are exact functors.
If we have
$$(C_1 coC_1 wC)$$
; so are $S_1 C$
(morphisms in $S_1 C$ are morphisms of functors
 $(n) \rightarrow C$; w.e. is a morphism such that all $A_{ij} \rightarrow A'_{ij}$
are w.e.).
Define
 $|K^w(C) = \Omega | N. wS_* C|$
bisimplicial set

Note: BwC → ΩBwS.C (first horizontal non
Generate: BGL → BGL⁺
But also:
BwS.C → ΩBwS.S.C → ...
Get a spectrum
Theorem Starting with ΩBwS.C, all →
are houst.equs
Follows from
The additivity Theorem
K'(F, C) ~, K''(C) ~ K(C)
(Similar to the Q construction).
i.e. K''(F, C) ~ K.^W(C)
$$\oplus$$
 K.^W(C)
Pf Later; along the lines of the proof
~~for~~ G .

Awish

agree with quite This does not di, Si- Namely:

Ao,)--- , Aoz J --> (Aoz Ā12

