Nonlinear (Dennis-Stein-Loday) HC.

$$
\begin{aligned}
& C L_{m, n}=\left\{\left\langle a_{0}, \ldots, a_{j-1},\left[\begin{array}{c}
a_{j}^{(1)} \\
\vdots \\
a_{j}^{(m)}
\end{array}\right], a_{j+1}, \ldots, a_{n}\right|\right. \\
& \left.0 \leq j \leq n ; 1-a_{0} \ldots a_{j-1} a_{j}^{(k)} a_{j+1} \ldots a_{n} \in G L(A)\right\} \\
& a_{j} \in M(A) ; \\
& \left(M(A)=\underset{\rightarrow}{\left.\lim _{n} M_{n}(A)\right)}\right.
\end{aligned}
$$

Subject to:
$* m=1:\left\langle a_{0}, \ldots,\left[a_{j}\right], \ldots, a_{n}\right\rangle$ all the same, den. by $\left\langle a_{0}, \ldots, a_{j}, \ldots, a_{n}\right\rangle$;
also put $C L_{0, n}=\{*\}$
$C L_{*,}$ is a (simplicial) $\times($ cyclic $)$ set Gie. a cyclic object in simplicial sets):

The cyclic structure:

$$
\begin{aligned}
& \quad d_{j}\left\langle a_{0}, \ldots, a_{n}\right\rangle=\left\langle a_{0}, \ldots, a_{j} a_{j+1}, \ldots, a_{n}\right\rangle, 0 \leq j\langle n j \\
& \# \\
& d_{n}\left\langle a_{0}, \ldots, a_{n}\right\rangle=\left\langle a_{n} a_{0}, a_{1}, \ldots, a_{n-1}\right\rangle ; \\
& T\left\langle a_{0}, \ldots, a_{n}\right\rangle=\left\langle a_{n}, a_{0}, \ldots, a_{n-1}\right\rangle
\end{aligned}
$$

where a_{i} way be $a_{i} \in \mu(A)$ of $\left[\begin{array}{c}a_{i}^{(1)} \\ i \\ a_{i}^{(m)}\end{array}\right]$ and

$$
a\left[\begin{array}{c}
a^{(1)} \\
\vdots \\
a^{(m)}
\end{array}\right]=\left[\begin{array}{c}
a a^{(1)} \\
\vdots \\
a a^{(m)}
\end{array}\right] ;\left[\begin{array}{c}
a^{(1)} \\
\vdots \\
a^{(m)}
\end{array}\right] \cdot a=\left[\begin{array}{c}
a^{(1)} a \\
\vdots \\
a^{(m)} a
\end{array}\right]
$$

The simplicial structure:

$$
\begin{aligned}
& d_{k}\left\langle a_{0}, \ldots,\left[\begin{array}{l}
a_{j}^{(1)} \\
\vdots \\
\vdots \\
a_{j}^{(m)}
\end{array}\right], \ldots, a_{m}\right\rangle=\left\langle a_{0}, \ldots,\left[\begin{array}{l}
a_{j}^{(2)} \\
\vdots \\
a_{j}^{(m)}
\end{array}\right], \ldots, a_{n}\right\rangle, \\
& \left\langle a_{0}, \ldots,\left[\begin{array}{l}
a_{j}^{(1)} \\
\vdots \\
a_{1}^{(k)}+a_{j}^{(n+1)} \\
\vdots \\
a_{j}^{(m)}
\end{array}\right], \ldots, a_{n}\right\rangle, \quad\left\langle a_{0}, \ldots,\left[\begin{array}{l}
a_{j}^{(1)} \\
\vdots \\
a_{j}^{(m-1)}
\end{array}\right], \ldots, a_{n}\right\rangle \\
& k=k<m ;
\end{aligned}
$$

Here

$$
a_{j}^{\prime}+a^{\prime \prime}=a^{\prime}+a^{\prime \prime}-a^{\prime} \cdot a_{j+1} \cdots a_{n} a_{0} \ldots a_{j-1} \cdot a^{\prime \prime}
$$

$\underline{R m k} a_{n} n$-tuple $a_{0}, \ldots, a_{j-1}, a_{j+1}, \ldots, a_{n}$ defines a monoid

$$
\left\{a^{\prime} \in M(A) \mid 1-a_{0} \ldots a_{j-1} \cdot a \cdot a_{j+1} \ldots a_{4} \in G L(A)\right\}
$$

with the operation $\underset{j}{ }$; this momoid maps to $G L(A):$

$$
a \longmapsto 1-a_{0} \ldots a_{j-1} a_{j} a_{j+1} \ldots a_{n}
$$

Formulas * turn it into a cyclic object in monoids.
If one disregards A then $C L_{*, 0}$ (as a bisimplicial set) is the nerve of the Simplicial category: $n \mapsto \underset{j, j, a_{a}, \ldots, \hat{a}_{j}, \ldots a_{n}}{ }$ monad $_{a_{0}, \ldots, \hat{y}_{j}, \ldots, a_{n}}$

Conjecturally:
map

$$
\operatorname{maps}_{11}\left(\Delta^{*} \times \Delta_{0}^{0},(\ldots \mid)\right.
$$

$\underset{\Lambda^{-p}}{\text { hocolim }} C L_{*,}(A) \longrightarrow \operatorname{Sing}\left|\underset{*}{B \in L}\left(A\left\{\Delta^{\prime}\right\}\right)\right|$
(Recall: $A\left\{\Delta^{n}\right\}=A\left\{t_{0}, \ldots, t_{n}\right\} /\left(\sum t_{j}-1\right)$
a simplicial algebra. The R.H.S. computes K(A)).
See: Notes on Dennis-Stern symbols.
Also note:

$$
C L_{*},(A) \longleftarrow B G L(A)
$$

(maps to the $x=0$ part)
Most probably: extends to $B G L(A)^{+}$.
Indeed: $\pi_{1}\left|C L_{\pi_{,}}(A)\right|$ is Abelian.

$$
G L(A) / \sim 1-a b \sim 1-b a \text { (if belong to } G L \text {) }
$$

$$
\begin{aligned}
& \left\langle E_{12}^{a}, E_{21}^{b}\right\rangle \xrightarrow[d_{1}]{\stackrel{d_{0}}{\longrightarrow} E_{11}^{a b}} \quad 1-E_{11}^{a b}=e_{11}^{1-a b} ; 1-E_{22}^{b a}=e_{22}^{1-b a} \\
& \text { Put } b=1: \quad e_{11}^{g} \sim e_{22}^{g}, \forall g \in A^{x}
\end{aligned}
$$

Or: for $g \in G L_{n}(A)$,
the image of $g_{i, \ldots, i n} \in G L(A)$ in π_{1} does not depend on $i,<\ldots<i_{n} . \Rightarrow G L(A) / \sigma$ is commutative.
Similarly: π_{1} should act trivially on π_{n}.
(by the same reason, basically obvious).

If we believe in this:

$$
\begin{gathered}
H C L_{i}(A):=\pi_{i+1}\left(\operatorname{locohm}_{\wedge} \underset{\wedge p}{ } C L_{* ;}(A)\right)=: K L_{i}(A) \\
K L_{i}(A) \rightleftarrows K_{i}(A)
\end{gathered}
$$

Mutually inverse on K_{1}.
what about on K_{2} ? (Does this give a new proof of the Matsumoto theorem?)
In general?
Conclusion for now:

$$
H \subset L_{0}(A)=K L_{\cdot+1}(A)
$$

also Hochschild, negative/periodic cyclic version. Conjecturally

$$
K L \cdot(A) \rightleftarrows K \cdot(A)
$$

Should define explicitly

$$
K L .(A) \rightarrow H C_{0}^{-}(A)
$$

and when A is pronilpotent, over (Q:

$$
K L .(A) \rightarrow H C_{0-1}(A)
$$

When A is commentative, both are known; the latter given by explicit formulas using polylogarithms (later).

Also: seems well-suited for K-theory of cluster algebras.

