The Quillen + construction
$X$ path connected; $N \leq \pi_{1}(x) \quad N$ perfect

$$
\begin{aligned}
& X \xrightarrow{f} X^{+} \\
& \pi_{1}(x) \underset{\text { prof }}{\longrightarrow} \pi_{1}\left(X^{+}\right)=\pi(X) / N \\
& f_{1}: H .\left(X, f^{+} L\right) \simeq H_{\cdot}\left(X^{+}, L\right) \\
& \forall \text { loo syst } L \text { on } X^{+}
\end{aligned}
$$

Construction: 1) $X \rightarrow X_{1}$

$$
\begin{aligned}
& \hat{x} \rightarrow \tilde{x}_{1} \\
& \tilde{x}_{N}= \\
& \dot{x} \rightarrow \tilde{x}_{1}(x) / N
\end{aligned}
$$

$$
\pi_{1}\left(x_{1}\right)=\pi_{1}(x) / N
$$ just kill all (classes $\gamma_{2}$ of) loops in $N$ by 2-cells $e_{\alpha}$.



So: the images of $\alpha$-cells $\mathcal{E}_{\alpha}$ in $H_{2}\left(\tilde{x}_{1}, \hat{x}\right)$ come from $\pi_{2}\left(\tilde{x}_{1}\right)$.
Kill their mage in $\pi_{2}\left(x_{1}\right)$ by 3-cells $b_{\alpha}$. We get $X^{+}$.
Now (roughly):

$$
\begin{aligned}
& \text { roughly): } \\
& C_{3}\left(\tilde{x}^{+}, \hat{x}\right) \stackrel{\partial}{\sim} C_{2}\left(\tilde{x}^{+}, \hat{x}\right) \\
& \text { basis: } e
\end{aligned}
$$

basis: $b_{\alpha}$ basis: $e_{\alpha}$
Therefore $\quad C_{0}\left(x^{+}, x ; \mathbb{Z}\left[\pi_{1}(x) / N\right]\right)$
21
0

$$
\begin{aligned}
& C \cdot\left(x, f^{+} \mathbb{Z}\left[\pi_{1}(x) \mathbb{N}\right]\right) \simeq C \cdot\left(x^{+}, \mathbb{T}\left({ }^{(0} 0\right)\right. \\
& \mathbb{U} \\
& C_{0}\left(x, f^{*} L\right) \simeq C \cdot\left(x^{+}, L\right) \underset{\text { on }}{\forall x^{+}}
\end{aligned}
$$

Thu



If By obstruction theory:

1) obstruction $t$ lift $f$ to the 2 -skeleton:

Can extend of $\pi_{1} x \longrightarrow \pi x^{+}$
2) Given an extension to the n-skeleton $X_{n}^{+}$: obstruction to extending to $X_{n+1}^{+}$is in $H^{n+1}\left(X^{+}, X ; \pi_{n} Y\right)$ hoe syst on
In our case: all vanish.
Rum Easier case of obstruction theory: $Y_{i} \longleftarrow A . \hookrightarrow X . \quad$ complexes; assoung

$$
\begin{aligned}
& X_{<0}=0 ; \text { and } \\
& Y_{i} \leftarrow A_{i} \hookrightarrow X_{i}
\end{aligned}
$$

Consequative obstructions in

$$
H^{n+1}\left(X_{0}, A_{0} ; H_{n}\left(Y_{.}\right)\right)
$$

Homotony fiber

$$
\begin{aligned}
& F(R) \rightarrow B G L(R) \rightarrow B G L(R)^{+} \\
& \prime \prime \pi_{1}(x) / N \\
& F(R) \rightarrow B G\left((R) \rightarrow B G L(R)^{+}\right.
\end{aligned}
$$



We conclude: $\tilde{H}(F(R)) \simeq 0$.
Let $G=\pi_{1}(F(R))$. Another spectral sequence:

$$
H_{i}\left(G_{1} H_{j}(\widetilde{F(R)})\right) \Longrightarrow H_{i+j}(F(R))
$$

$E_{\infty}$ is acyclic. $\Rightarrow H_{1} G=H_{2} G=0$

$$
\begin{aligned}
& H_{3}\left(G, H_{0} \tilde{F}\right) \\
& H_{2}\left(G_{1}, H_{0} \tilde{F}\right) \quad H_{2}\left(G_{1} H \mid \tilde{F}\right) \quad H_{2}\left(G_{1} H_{2} \tilde{F}\right) \\
& H_{1}\left(G, H_{0} \tilde{F}\right) \\
& H_{0}\left(G, H_{0}(\tilde{F}(R))\right) H_{0}(G, H)(\tilde{F}(R)){ }^{\sim} H_{0}\left(G, H_{2}(\tilde{F}(R))\right. \\
& 0 \quad\left(H_{1} \tilde{F}=0 \text { since } \pi, \widetilde{F}=0\right)
\end{aligned}
$$

$$
\begin{aligned}
F(R) & \longrightarrow B G L \longrightarrow B G L^{+} \\
0 \longrightarrow \pi_{2} B G L^{+}-\pi_{1} F(R) & \longrightarrow \pi_{1} B G L \longrightarrow \pi_{1} B G L^{+} \\
\pi_{2}\left(B G L(A)^{+}\right) & \longrightarrow G \longrightarrow E(A)
\end{aligned}
$$

AND: $H_{1} G=H_{2} G=0$
universal central extension of $E(A)$

$$
\begin{aligned}
& \text { Also: } H_{3}(G) \simeq H_{0}\left(G, H_{2} \tilde{F}\right) \\
& K_{3}(R) \simeq \pi_{2} F(R) \simeq \underbrace{H_{2} \widetilde{F}}_{\text {fact: }} \overbrace{\pi_{1} F G \pi_{2} F}^{H_{0}\left(\pi_{1} F, \pi_{2} F\right)}
\end{aligned}
$$

Cor: $K_{3}(R) \simeq H_{3}(S t(R))$

$$
\begin{aligned}
K_{3}(R) \simeq H_{3}(S t(R)) & \\
& \text { b/c } \pi_{1}(F) \\
& \text { acts trivially on } \\
B & \text { ker }\left(\pi_{n} F \rightarrow \pi_{n} E\right)
\end{aligned}
$$

fibration

Thu $B G L(A)^{7}$ is a homotopy commutative homotopy associative

H-spare
the operation:

$$
a \oplus b=\left[\begin{array}{llll}
a_{11} & a_{12} & a_{13} & \ldots \\
& b_{11} & b_{12} & \\
a_{21} & a_{22} & & \\
& b_{21} & b_{22} &
\end{array}\right]
$$

Problem: $(a \oplus b) \oplus c$ $a \oplus b$


$$
a \oplus(b \oplus c)
$$

by conjugation. But
Conjugation acts homotopically trivially on $B G L(A)^{+}$.
Main step in the proof: Define an almost conjugation to be a haman $G L(A) \rightarrow G L(A)$
given by

$$
u_{.}(a)= \begin{cases}a_{i j} & \text { if } k=u(i), l=u(j) \\ \delta_{i j} & \text { otherwise }\end{cases}
$$

for a given embedding $u: \mathbb{N} \hookrightarrow \mathbb{N}$.
(If $u$ is a bijection, this is a conjugation by a permutation matrix).
Clam: an almost conjugation is homotopic to identity on BGL(A) ${ }^{+}$C to which it obviously extends).
Key step for that: Conjugation by an element of a group acts trivially on homology H.(G). Explicit homotopy:

$$
\left(g_{1}, \cdots, g_{n}\right) \mapsto \sum_{i=0}^{n}(-1)^{i}\left(g_{1} \sigma^{-1}, \ldots, s g_{i} 6^{-1}, 6, g_{i+1}, \ldots, g_{n}\right)
$$

From this: $u_{0}: B E(A)^{+} \rightarrow B E(A)^{+}$is a homotopy equivalence because:

- it mduces ism on H. (Hurewicz)
- E(A) ${ }^{+}$is simply-connected

Oles: $\quad B E(A)_{\text {clam }}^{+} \cong \stackrel{C}{B} G L(A)^{+}$

We deduce:

$$
\overrightarrow{B G L(A)^{+}} \underset{u_{0}}{\sim} \sqrt{B G L(A)^{+}}
$$

$\pi_{1}\left(B G L(A)^{+}\right)$-equivariant; therefore

$$
u_{0}: B G L(A)^{+} \underset{\text { he. }}{\sim} \operatorname{BGL}\left(\left.A\right|^{+}\right.
$$

and from that: $u . \simeq$ id.
Rule Conjugation (eeg, by permutations)
acts homotopically trivially egg. on

$$
B G L\left(A\left\{\triangle^{0}\right\}\right)
$$

