1. Using the Principle of Extension, prove the following (\(\triangle \) is symmetric difference):
 (a) \(A \triangle (B \triangle C) = (A \triangle B) \triangle C \).
 (b) \(A \cap (B \triangle C) = (A \cap B) \triangle (A \cap C) \).
 You may use properties stated in the Notes or proven in previous homework assignments.

2. Prove that the following statements are equivalent:
 (a) \(A \subseteq B \).
 (b) \(A \cap B = A \).
 (c) \(A \cup B = B \).
 (d) \(A - B = \emptyset \).
 (One way to prove the equivalence is to prove the chain of implications: (a) \(\Rightarrow \) (b) \(\Rightarrow \) (c) \(\Rightarrow \) (d) \(\Rightarrow \) (a).)

3. Prove the following:
 (a) \(A \triangle B = \emptyset \iff A = B \).
 (b) \(A \triangle B \subseteq S \iff A - S = B - S \).

4. For \(n \geq 1 \) let \(A_n \) be the following interval: \(A_n = \left[-2, (-1)^n(1 + 1/n) \right] \). Find the following \((k \in \mathbb{Z}^+)\):
 (a) \(\bigcap_{n=k}^{\infty} A_n \),
 (b) \(\bigcup_{n=k}^{\infty} A_n \),
 (c) \(\bigcup_{k=1}^{\infty} \left(\bigcap_{n=k}^{\infty} A_n \right) \),
 (d) \(\bigcap_{k=1}^{\infty} \left(\bigcup_{n=k}^{\infty} A_n \right) \).

5. Find the properties (reflexive, transitive, symmetric, antisymmetric) verified by the following relations:
 (a) Strict inequality of integers: \(x \mathcal{R} y \iff x < y \).
 (b) Set disjointness: \(A \mathcal{R} B \iff A \cap B = \emptyset \).
 (c) The following relation on \(\mathbb{Q} \): \(x \mathcal{R} y \iff x - y \in \mathbb{Z} \).
 (d) The following relation on \(\mathbb{Q} \): \(x \mathcal{R} y \iff x - y \in \mathbb{N} \).

6. We define the following relation on \(\mathbb{N} \): \(x \preceq y \) if and only if
 (a) \(x \) is even and \(y \) is odd, or
 (b) \(x \) and \(y \) have the same parity and \(x \leq y \).
 For instance: \(2 \preceq 6, 3 \preceq 7, 2 \preceq 5, 24 \preceq 3 \).
 1. Prove that \(\preceq \) is a total order.
 2. For each of the following numbers find a successor an immediate successor, a predecessor and an immediate predecessor, or show that there is none: 3, 2, 1, 0.

7. Prove that the following is an equivalence relation on \(\mathbb{N}^2 \):
 \((a, b) \mathcal{R} (a', b') \iff a + b' = a' + b \).
8. Let U be a nonempty set, and let $\mathcal{P}(U)$ be its power set. Let $S \in \mathcal{P}(U)$ be a subset of U. In $\mathcal{P}(U)$ we define the following relation: $A \mathcal{R} B \iff A \triangle B \subseteq S$.
(a) Prove that \mathcal{R} is an equivalence relation.
(b) Prove that all equivalence classes have the form $C_A = \{A \cup S' \mid S' \in \mathcal{P}(S)\}$ for $A \in \mathcal{P}(S)$.

9. Find (if they exist) the greatest element, the least element, the least upper bound and the greatest lower bound for each of the following subsets of (\mathbb{R}, \leq):
(a) $A = \{(-1)^n + 1/n \mid n \in \mathbb{Z}^+\}$.
(b) $B = \{x \in \mathbb{R} \mid x^2 < 5\}$.
(c) $C = \{x \in \mathbb{Q} \mid x^2 < 5\}$.
(d) $D = \{x \in \mathbb{Z} \mid x^2 < 5\}$.

10. Draw the Hasse diagram for the poset $P = (\{2, 3, 4, 5, 6, 7, 8, 9, 10\}, |)$, where “|” represents divisibility. Find the minimal and maximal elements in P.