9.3. Regular Languages

9.3.1. Properties of Regular Languages. Recall that a regular language is the language associated to a regular grammar, i.e., a grammar \(G = (N, T, P, \sigma) \) in which every production is of the form:

\[
A \rightarrow a \quad \text{or} \quad A \rightarrow aB \quad \text{or} \quad A \rightarrow \lambda,
\]

where \(A, B \in N \), \(a \in T \).

Regular languages over an alphabet \(T \) have the following properties (recall that \(\lambda = \) 'empty string', \(\alpha \beta = \) 'concatenation of \(\alpha \) and \(\beta \)', \(\alpha^n = \) '\(\alpha \) concatenated with itself \(n \) times'):

1. \(\emptyset, \{ \lambda \}, \) and \(\{ a \} \) are regular languages for all \(a \in T \).

2. If \(L_1 \) and \(L_2 \) are regular languages over \(T \) the following languages also are regular:

\[
\begin{align*}
L_1 \cup L_2 &= \{ \alpha \mid \alpha \in L_1 \text{ or } \alpha \in L_2 \} \\
L_1L_2 &= \{ \alpha\beta \mid \alpha \in L_1, \beta \in L_2 \} \\
L_1^* &= \{ \alpha_1 \ldots \alpha_n \mid \alpha_k \in L_1, \ n \in \mathbb{N} \}, \\
T^* - L_1 &= \{ \alpha \in T^* \mid \alpha \notin L_1 \}, \\
L_1 \cap L_2 &= \{ \alpha \mid \alpha \in L_1 \text{ and } \alpha \in L_2 \}.
\end{align*}
\]

We justify the above claims about \(L_1 \cup L_2 \), \(L_1L_2 \) and \(L_1^* \) as follows. We already know how to combine two grammars (see 9.2.4) \(L_1 \) and \(L_2 \) to obtain \(L_1 \cup L_2 \), \(L_1L_2 \) and \(L_1^* \), the only problem is that the rules given in section 9.2.4 do no have the form of a regular grammar, so we need to modify them slightly (we use the same notation as in section 9.2.4):

1. **Union Rule:** Instead of adding \(\sigma \rightarrow \sigma_1 \) and \(\sigma \rightarrow \sigma_2 \), add all productions of the form \(\sigma \rightarrow \text{RHS} \), where RHS is the right hand side of some production \((\sigma_1 \rightarrow \text{RHS}) \in P_1 \) or \((\sigma_2 \rightarrow \text{RHS}) \in P_2 \).

2. **Product Rule:** Instead of adding \(\sigma \rightarrow \sigma_1\sigma_2 \), use \(\sigma_1 \) as starting symbol and replace each production \((A \rightarrow a) \in P_1 \) with \(A \rightarrow a\sigma_2 \) and \((A \rightarrow \lambda) \in P_1 \) with \(A \rightarrow \sigma_2 \).

3. **Closure Rule:** Instead of adding \(\sigma \rightarrow \sigma_1\sigma \) and \(\sigma \rightarrow \lambda \), use \(\sigma_1 \) as starting symbol, add \(\sigma_1 \rightarrow \lambda \), and replace each production \((A \rightarrow a) \in P_1 \) with \(A \rightarrow a\sigma_1 \) and \((A \rightarrow \lambda) \in P_1 \) with \(A \rightarrow \sigma_1 \).
9.3.2. Regular Expressions. Regular languages can be characterized as languages defined by regular expressions. Given an alphabet T, a regular expression over T is defined recursively as follows:

1. \emptyset, λ, and a are regular expressions for all $a \in T$.

2. If R and S are regular expressions over T the following expressions are also regular: (R), $R + S$, $R \cdot S$, R^*.

In order to use fewer parentheses we assign those operations the following hierarchy (from do first to do last): \ast, \cdot, $+$. We may omit the dot: $\alpha \cdot \beta = \alpha \beta$.

Next we define recursively the language associated to a given regular expression:

$$
\begin{align*}
L(\emptyset) &= \emptyset, \\
L(\lambda) &= \{\lambda\}, \\
L(a) &= \{a\} \quad \text{for each } a \in T, \\
L(R + S) &= L(R) \cup L(S), \\
L(R \cdot S) &= L(R)L(S) \quad \text{(language product)}, \\
L(R^*) &= L(R)^* \quad \text{(language closure)}.
\end{align*}
$$

So, for instance, the expression a^*bb^* represents all strings of the form $a^n b^m$ with $n \geq 0$, $m > 0$, $a^*(b + c)$ is the set of strings consisting of any number of a's followed by a b or a c, $a(a + b)^*b$ is the set of strings over $\{a, b\}$ than start with a and end with b, etc.

Another way of characterizing regular languages is as sets of strings recognized by finite-state automata, as we will see next. But first we need a generalization of the concept of finite-state automaton.

9.3.3. Nondeterministic Finite-State Automata. A nondeterministic finite-state automaton is a generalization of a finite-state automaton so that at each state there might be several possible choices for the “next state” instead of just one. Formally a nondeterministic finite-state automaton consists of:

1. A finite set of input symbols I.
2. A finite set of states S.
3. A next-state function $f : S \times I \to \mathcal{P}(S)$.
4. A subset A of S of accepting states.
5. An *initial state* $\sigma \in S$.

We represent the automaton $A = (I, S, f, A, \sigma)$. We say that a non-deterministic finite-state automaton *accepts* a given string of input symbols if in its transition diagram there is a path from the starting state to an accepting state with its edges labeled by the symbols of the given string. A path (which we can express as a sequence of states) whose edges are labeled with the symbols of a string is said to *represent* the given string.

Example: Consider the nondeterministic finite-state automaton defined by the following transition diagram:

![Transition Diagram](image)

This automaton accepts precisely the strings of the form $b^n a b^m$, $n \geq 0$, $m > 0$. For instance the string $b b a b b$ is represented by the path $(\sigma, \sigma, \sigma, C, C, F)$. Since that path ends in an accepting state, the string is accepted by the automaton.

Next we will see that there is a precise relation between regular grammars and nondeterministic finite-state automata.

Regular grammar associated to a nondeterministic finite-state automaton. Let A be a non-deterministic finite-state automaton given as a transition diagram. Let σ be the initial state. Let T be the set of inputs symbols and let N be the set of states. Let P be the set of productions

$$S \rightarrow xS'$$

if there is an edge labeled x from S to S' and

$$S \rightarrow \lambda$$

if S is an accepting state. Let G be the regular grammar

$$G = (N, T, P, \sigma).$$

Then the set of strings accepted by A is precisely $L(G)$.

Example: For the nondeterministic automaton defined above the corresponding grammar will be:
$T = \{a, b\}, \ N = \{\sigma, C, F\},$ with the productions

\[
\sigma \to b\sigma, \ \sigma \to aC, \ \ C \to bC, \ \ C \to bF, \ \ F \to \lambda.
\]

The string $bbabb$ can be produced like this:

\[
\sigma \Rightarrow b\sigma \Rightarrow bb\sigma \Rightarrow bbaC \Rightarrow bbabC \Rightarrow bbabbF \Rightarrow bbabb.
\]

Nondeterministic finite-state automaton associated to a given regular grammar. Let $G = (N, T, P, \sigma)$ be a regular grammar. Let

\[
I = T \cup S = N \cup \{F\}, \text{ where } F \not\in N \cup T
\]

\[
f(S, x) = \{S' \mid S \to xS' \in P\} \cup \{F \mid S \to x \in P\}
\]

\[
A = \{F\} \cup \{S \mid S \to \lambda \in P\}.
\]

Then the nondeterministic finite-state automaton $A = (I, S, f, A, \sigma)$ accepts precisely the strings in $L(G)$.

9.3.4. Relationships Between Regular Languages and Automata. In the previous section we saw that regular languages coincide with the languages accepted by nondeterministic finite-state automata. Here we will see that the term “nondeterministic” can be dropped, so that regular languages are precisely those accepted by (deterministic) finite-state automata. The idea is to show that given any nondeterministic finite-state automata it is possible to construct an equivalent deterministic finite-state automata accepting exactly the same set of strings. The main result is the following:

Let $A = (I, S, f, A, \sigma)$ be a nondeterministic finite-state automaton. Then A is equivalent to the finite-state automaton $A' = (I', S', f', A', \sigma')$, where

1. $S' = \mathcal{P}(S)$.
2. $I' = I$.
3. $\sigma' = \{\sigma\}$.
4. $A' = \{X \subseteq S \mid X \cap A \neq \emptyset\}$.
5. $f'(X, x) = \bigcup_{S \in X} f(S, x), \ f'(\emptyset, x) = \emptyset$.

Example: Find a (deterministic) finite-state automaton A' equivalent to the following nondeterministic finite-state automaton A:

![Diagram of automaton]

Answer: The set of input symbols is the same as that of the given automaton: $I' = I = \{a, b\}$. The set of states is the set of subsets of $S = \{\sigma, C, F\}$, i.e.:

$$S' = \{\emptyset, \{\sigma\}, \{C\}, \{F\}, \{\sigma, C\}, \{\sigma, F\}, \{C, F\}, \{\sigma, C, F\}\}.$$

The starting state is $\{\sigma\}$. The accepting states of A' are the elements of S' containing some accepting state of A:

$$A' = \{\{F\}, \{\sigma, F\}, \{C, F\}, \{\sigma, C, F\}\}.$$

Then for each element X of S' we draw an edge labeled x from X to $\bigcup_{S \in X} f(S, x)$ (and from \emptyset to \emptyset):

![Diagram of simplified automaton]

We notice that some states are unreachable from the starting state. After removing the unreachable states we get the following simplified version of the finite-state automaton:
So, once proved that every nondeterministic finite-state automaton is equivalent to some deterministic finite-state automaton, we obtain the main result of this section: A language L is regular if and only if there exists a finite-state automaton that accepts precisely the strings in L.