GENERATING FUNCTIONS

MIGUEL A. LERMA

(Last updated: October 29, 2003)

1. Generating Functions

1. Definition. Given a sequence $a_{0}, a_{1}, a_{2}, \ldots$, the function

$$
f(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots=\sum_{n=0}^{\infty} a_{n} x^{n}
$$

is called the generating function for the given sequence.
Examples:
(1) $(1+x)^{m}=\sum_{n=0}^{m}\binom{m}{n} x^{n}$ is the generating function for

$$
\binom{m}{0},\binom{m}{1},\binom{m}{2}, \ldots,\binom{m}{m}, 0,0,0, \ldots
$$

(2) $1 /(1-x)=1+x+x^{2}+x^{3}+\cdots$ is the generating function for the constant sequence $a_{n}=1$.
(3) The generating function of a geometric sequence $a_{n}=A r^{n}$ is

$$
\frac{A}{1-r x}=A+A r x+A r^{2} x^{2}+A r^{3} x^{3}+\ldots
$$

(4) If $f(x)=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\cdots$ is the generating function for $a_{0}, a_{1}, a_{2}, \ldots$, then the following is the generating function for the sequence of partial sums $\sum_{k=0}^{n} a_{k}$:

$$
\begin{aligned}
\frac{f(x)}{1-x} & =f(x)\left(1+x+x^{2}+x^{3}+\cdots\right) \\
& =\left(a_{0}+a_{1} x+a_{2} x^{2}+\cdots\right)\left(1+x+x^{2}+x^{3}+\cdots\right) \\
& =a_{0}+\left(a_{0}+a_{1}\right) x+\left(a_{0}+a_{1}+a_{2}\right) x^{2}+\cdots
\end{aligned}
$$

(5) Partitions of Integers. Let $p_{M}(n)$ be the number of ways the positive integer n can be written as a sum of positive integers
not exceeding M. For instance $p_{3}(5)=5$ because $5=3+2=$ $3+1+1=2+2+1=2+1+1+1=1+1+1+1+1$. Then

$$
\prod_{k=1}^{M} \frac{1}{1-x^{k}}=\sum_{n=0}^{\infty} p_{M}(n) x^{k}
$$

Example: Use generating functions to find the sum of the terms of a geometric sequence: $s_{n}=1+r+r^{2}+\cdots+r^{n}(r \neq 1)$. Answer: We have

$$
\frac{1}{1-r x}=\sum_{n=0}^{\infty} r^{n} x^{n}
$$

hence

$$
\frac{1}{(1-x)(1-r x)}=\sum_{n=0}^{\infty} s_{n} x^{n}
$$

Next, we expand the left hand side into partial fractions:

$$
\begin{aligned}
\frac{1}{(1-x)(1-r x)} & =\frac{1}{1-r}\left(\frac{1}{1-x}-\frac{r}{1-r x}\right) \\
& =\frac{1}{r-1}\left(\sum_{n=0}^{\infty} r^{n+1} x^{n}-\sum_{n=0}^{\infty} x^{n}\right) \\
& =\sum_{n=0}^{\infty} \frac{r^{n+1}-1}{r-1} x^{n}
\end{aligned}
$$

hence

$$
s_{n}=\frac{r^{n+1}-1}{r-1}
$$

2. Generating Function of a Linear Homogeneous Recurrence.

Given a k th-order linear homogeneous recurrence relation:

$$
x_{n}+c_{1} x_{n-1}+c_{2} x_{n-2}+\cdots+c_{k} x_{n-k}=0
$$

(note that the leading coefficient is 1), its characteristic polynomial is

$$
Q(r)=r^{k}+c_{1} r^{n-1}+c_{2} r^{n-2}+\cdots+c_{k}
$$

Let $q(x)=x^{k} Q\left(x^{-1}\right)$ be the polynomial ${ }^{1}$

$$
q(x)=x^{k} Q\left(x^{-1}\right)=1+c_{1} x+c_{2} x^{2}+\cdots c_{k} x^{k}
$$

[^0]Then the solution of the recurrence has the following generating function:

$$
f(x)=\frac{p(x)}{q(x)}
$$

where $p(x)$ is some polynomial of degree less than r which depends on the initial conditions for the recurrence.

Example: We use the method of generating functions to obtain the close-form formula for the Fibonacci sequence. The Fibonacci sequence F_{n} has the following characteristic polynomial:

$$
P(x)=r^{2}-r-1,
$$

so $q(x)=1-x-x^{2}$. Hence,

$$
\frac{a+b x}{1-x-x^{2}}=F_{0}+F_{1} x+F_{2} x^{2}+\cdots
$$

We determine the numerator of the generating function by writing

$$
\begin{aligned}
a+b x & =\left(1-x-x^{2}\right)\left(F_{0}+F_{1} x+F_{2} x^{2}+\cdots\right) \\
& =F_{0}+\left\{F_{1}-F_{0}\right\} x+\left\{F_{2}-F_{1}-F_{0}\right\} x^{2}+\ldots,
\end{aligned}
$$

so that $a=F_{0}=0, b=F_{1}-F_{0}=1$, hence:

$$
\frac{x}{1-x-x^{2}}=F_{0}+F_{1} x+F_{2} x^{2}+\cdots
$$

We can factor the denominator like this

$$
1-x-x^{2}=(1-\phi x)\left(1+\phi^{-1} x\right)
$$

where

$$
\phi=\frac{1+\sqrt{5}}{2} ; \quad-\phi^{-1}=\frac{1-\sqrt{5}}{2} .
$$

The generating function can be expressed as a sum of partial fractions in the following way:

$$
\frac{x}{1-x-x^{2}}=\frac{1}{\sqrt{5}}\left\{\frac{1}{1-\phi x}-\frac{1}{1+\phi^{-1} x}\right\} .
$$

Since in general $1 /(1-a x)$ is the generating function for the sequence a^{n}, we get that

$$
\begin{aligned}
\frac{x}{1-x-x^{2}} & =\frac{1}{\sqrt{5}}\left\{\sum_{n=0}^{\infty} \phi^{n} x^{n}-\sum_{n=0}^{\infty}\left(-\phi^{-1}\right)^{n} x^{n}\right\} \\
& =\frac{1}{\sqrt{5}} \sum_{n=0}^{\infty}\left\{\phi^{n}-(-\phi)^{-n}\right\} x^{n}
\end{aligned}
$$

That must be equal to

$$
\frac{x}{1-x-x^{2}}=\sum_{n=0}^{\infty} F_{n} x^{n},
$$

so we get:

$$
F_{n}=\frac{1}{\sqrt{5}}\left\{\phi^{n}-(-\phi)^{-n}\right\} .
$$

[^0]: ${ }^{1}$ The polynomial $q(x)$ is called reciprocal of $Q(x)$.

