A binary operation on rationals. Let \circ be a binary operation defined on rational numbers with the following properties:

- (1) Commutative: $a \circ b = b \circ a$.
- (2) Associative: $a \circ (b \circ c) = (a \circ b) \circ c$.
- (3) Idempotency of zero: $0 \circ 0 = 0$
- (4) Distributivity of '+' respect to 'o': $(a \circ b) + c = (a + c) \circ (b + c)$.

Prove that the operation is either $a \circ b = \max(a, b)$ or $a \circ b = \min(a, b)$.

Solution. First we note that every element is idempotent:

$$a \circ a = (0+a) \circ (0+a) = (0 \circ 0) + a = 0 + a = a$$
.

We will say that "b absorbs a", written $a \leq b$, if $a \circ b = b$. This is an order relation, since it is:

- (1) Reflexive: $a \circ a = a \Rightarrow a \preceq a$.
- (2) Antisymmetric: if $a \leq b$ and $b \leq a$ then $a \circ b = b$ and $a \circ b = a$, hence a = b.
- (3) Transitive: if $a \leq b$ and $b \leq c$ then $a \circ b = b$ and $b \circ c = c$, hence $a \circ c = a \circ (b \circ c) = (a \circ b) \circ c = b \circ c = c$, so $a \prec c$.

Some additional properties of \leq are:

(1) $a \leq b \Rightarrow a + c \leq b + c$. In fact, because of distributivity of + respect to \circ we have:

$$a \leq b \Rightarrow a \circ b = b \Rightarrow (a+c) \circ (b+c) = b+c \Rightarrow a+c \leq b+c$$

(2) $a \circ b$ is the least upper bound of a and b respect to \preceq , i.e., $a \preceq a \circ b$ and $b \preceq a \circ b$, and if $a \preceq c$ and $b \preceq c$ then $a \circ b \preceq c$. In fact:

$$a \circ (a \circ b) = (a \circ a) \circ b = a \circ b \implies a \preceq a \circ b$$
,

and similarly for $b \leq a \circ b$. On the other hand, if $a \leq c$ and $b \leq c$ then $a \circ c = c$ and $b \circ c = c$, hence $a \circ b \circ c = a \circ c = c$, so $a \circ b \leq c$.

Next, define $0^* = \{x \in \mathbb{Q} \mid 0 \leq x\}$ (rational numbers absorbing 0). This set has the following properties:

- (1) It contains zero: $0 \in 0^*$.
- (2) It is closed respect to addition. i.e., $x, y \in 0^* \Rightarrow x + y \in 0^*$. In fact, if $x, y \in 0^*$ then $0 \leq x$ and $0 \leq y$, so $0 + x \leq x + y$, i.e., $x \leq x + y$, and by transitivity $0 \leq x + y$.
- (3) It is closed respect to multiplication by positive integers:

$$n \in \mathbb{Z}^+$$
 and $x \in 0^* \Rightarrow nx = x + \dots + x \in 0^*$.

(4) It is closed respect to division by positive integers: If $x \in 0^*$ and $m \in \mathbb{Z}^+$, consider the m + 1 points $x_k = kx/m$ for $k = 0, 1, \ldots, m$. Let $u = x_0 \circ x_1 \circ \cdots \circ x_{m-1}$ and $v = x_1 \circ x_2 \circ \cdots \circ x_m = u + x/m$. We have

$$\iota \circ v = x_0 \circ x_1 \circ \cdots \circ x_m \, ,$$

but $x_0 = 0$ and $x_m = x$, and by hypothesis $0 \leq x$, i.e., $0 \circ x = x$, so

$$x_0 \circ x_1 \circ \cdots \circ x_m = x_1 \circ \cdots \circ x_m = v$$
,

hence $u \circ v = v$, $u \preceq v$, $0 \preceq v - u = x/m$, i.e., $x/m \in 0^*$.

- (5) As a consequence of the previous two results, 0^* is closed respect to multiplication by positive rational numbers.
- (6) It contains some non-zero element: given two different rational numbers a, b, we have $a \leq a \circ b$ and $b \leq a \circ b$, hence $(a \circ b) a$ and $(a \circ b) b$ are in 0^* , and at least one is not zero.
- (7) Either all its non-zero elements are positive, or they are all negative. This can be proved by contradiction: Assume 0^* contains both positive and negative elements, i.e., there are $x, y \in 0^*$, x < 0, y > 0. Since 0^* is closed respect to multiplication by positive rational numbers, we have that $x \cdot 1/(-x) = -1$ and $y \cdot 1/y = 1$ are in 0^* , so $0 \leq -1$ and $0 \leq 1$. Adding 1 to the first expression we get $1 \leq 0$, and by antisymmetry 0 = 1, which is absurd.

Since 0^* is closed respect to multiplication by positive rational numbers there are two possibilities, either 0^* consists of all positive rational numbers and zero, or it consists of all negative rational numbers and zero. Assume first that 0^* consists of all positive rational numbers and zero. Then $0 \leq x \Leftrightarrow 0 \leq x$, or equivalently, $a \leq b \Leftrightarrow a \leq b$, i.e., the relation \leq coincides with the usual order on rational numbers. But $a \circ b = \text{least upper bound of } a$ and b respect to \leq , which is the same relation as \leq , so $a \circ b = \max(a, b)$.

The other possibility is that 0^* consists of all negative rational numbers and zero. In this case we have that $a \leq b \Leftrightarrow a \geq b$, and $a \circ b = \min(a, b)$.

Remark: The result does not hold on extensions of \mathbb{Q} , for instance on $\mathbb{Q}[\sqrt{2}] = \{r + s\sqrt{2} \mid r, s \in \mathbb{Q}\}$ define the conjugate of an element $x = r + s\sqrt{2}$ as $\overline{x} = r - s\sqrt{2}$. Then the following binary operation verifies the hypotheses of the problem:

$$x \circ y = \max(\overline{x}, \overline{y}) \,,$$

and is different from $\min(x, y)$ and $\max(x, y)$.

Miguel A. Lerma - 4/2/2003