Eventually constant modulo m. Prove that for any two positive integers a and m, the following sequence is eventually constant modulo m : $a, a^{a}, a^{a^{a}}, a^{a^{a^{a}}}, \ldots$.

Solution. The result is trivial if $a=1$ or $m=1$, so we may assume that $a \geq 2$ and $m \geq 2$.
For convenience we use Donald Knuth's arrow notation for the iterated power:

Its recursive definition is the following: $a \uparrow \uparrow 0=1, a \uparrow \uparrow(n+1)=a^{a \uparrow \uparrow n}$.
So we must prove that $a \uparrow \uparrow n$ is eventually constant modulo m. The proof works by induction on m.
(1) Basic Step: If $m=2$ then obviously $a \uparrow \uparrow n \equiv a(\bmod 2)$ for every $n>0$, because $a \uparrow \uparrow n$ has the same parity has a.
(2) Induction Step: Assume that the result is true for every modulo up to $m-1$. We will prove that it is also true for modulo m.
(a) Case 1: If $\operatorname{gcd}(a, m)=1$, by Euler's theorem

$$
a \uparrow \uparrow(n+1)=a^{a \uparrow \uparrow n} \equiv a^{(a \uparrow \uparrow n) \bmod \phi(m)} \quad(\bmod m)
$$

where $\phi=$ Euler's phi function and $x \bmod y=$ " x reduced modulo y ". Since $\phi(m)<m$, by induction hypothesis $(a \uparrow \uparrow n) \bmod \phi(m)$ is eventually constant, hence $\{a \uparrow \uparrow(n+1)\} \bmod m$ is eventually constant.
(b) Case 2: If $\operatorname{gcd}(a, m)=g>1$ then we write $m=m_{1} m_{2}$, were $\operatorname{gcd}\left(m_{1}, m_{2}\right)=1$ and m_{1} contains exactly the same prime factors as g, perhaps raised to different exponents. Clearly $a \uparrow \uparrow n \equiv 0\left(\bmod m_{1}\right)$ for n large enough. If $m_{2}=1$ then we are done, otherwise $1<m_{2}<m$ and $\operatorname{gcd}\left(a, m_{2}\right)=1$, so by induction hypothesis $(a \uparrow \uparrow n) \bmod m_{2}$ is eventually constant, say $k=(a \uparrow \uparrow n) \bmod m_{2}$ for all n large enough. According to the Chinese Remainder Theorem, the following system of congruences

$$
\begin{cases}x \equiv 0 & \left(\bmod m_{1}\right) \\ x \equiv k & \left(\bmod m_{2}\right)\end{cases}
$$

has a unique solution $x=r$ modulo $m=m_{1} m_{2}$, hence $a \uparrow \uparrow n \equiv r(\bmod m)$ for all n large enough. This completes the proof.

Remark: The result can be generalized to any tower of exponents with an increasing number of levels, even if the exponents are not all the same: $a_{1}, a_{1}^{a_{2}}, a_{1}^{a_{2}^{a_{3}}}, a_{1}^{a_{3}^{a_{3}}}, \ldots$.
Corollary (graduate level): $a \uparrow \uparrow n$ has a p-adic limit as $n \rightarrow \infty$ for every p.
Miguel A. Lerma - 2/3/2003

