Eventually constant modulo m. Prove that for any two positive integers a and m, the following sequence is eventually constant modulo m: $a, a^a, a^{a^a}, a^{a^{a^a}}, \ldots$

Solution. The result is trivial if a = 1 or m = 1, so we may assume that $a \ge 2$ and $m \ge 2$.

For convenience we use Donald Knuth's arrow notation for the iterated power:

$$a \uparrow \uparrow n = a^{a^{\cdot}}$$

Its recursive definition is the following: $a \uparrow \uparrow 0 = 1$, $a \uparrow \uparrow (n+1) = a^{a \uparrow \uparrow n}$.

So we must prove that $a \uparrow \uparrow n$ is eventually constant modulo m. The proof works by induction on m.

- (1) Basic Step: If m = 2 then obviously $a \uparrow \uparrow n \equiv a \pmod{2}$ for every n > 0, because $a \uparrow \uparrow n$ has the same parity has a.
- (2) Induction Step: Assume that the result is true for every modulo up to m 1. We will prove that it is also true for modulo m.
 - (a) Case 1: If gcd(a, m) = 1, by Euler's theorem

 $a \uparrow \uparrow (n+1) = a^{a \uparrow \uparrow n} \equiv a^{(a \uparrow \uparrow n) \mod \phi(m)} \pmod{m},$

where $\phi = \text{Euler's phi}$ function and $x \mod y = x$ reduced modulo y. Since $\phi(m) < m$, by induction hypothesis $(a \uparrow \uparrow n) \mod \phi(m)$ is eventually constant, hence $\{a \uparrow \uparrow (n+1)\} \mod m$ is eventually constant.

(b) Case 2: If gcd(a, m) = g > 1 then we write $m = m_1m_2$, were $gcd(m_1, m_2) = 1$ and m_1 contains exactly the same prime factors as g, perhaps raised to different exponents. Clearly $a \uparrow \uparrow n \equiv 0 \pmod{m_1}$ for n large enough. If $m_2 = 1$ then we are done, otherwise $1 < m_2 < m$ and $gcd(a, m_2) = 1$, so by induction hypothesis $(a \uparrow \uparrow n) \mod m_2$ is eventually constant, say $k = (a \uparrow \uparrow n) \mod m_2$ for all n large enough. According to the Chinese Remainder Theorem, the following system of congruences

$$\begin{cases} x \equiv 0 \pmod{m_1} \\ x \equiv k \pmod{m_2} \end{cases}$$

has a unique solution x = r modulo $m = m_1 m_2$, hence $a \uparrow \uparrow n \equiv r \pmod{m}$ for all n large enough. This completes the proof.

Remark: The result can be generalized to any tower of exponents with an increasing number of levels, even if the exponents are not all the same: $a_1, a_1^{a_2}, a_1^{a_2^{a_3}}, a_1^{a_2^{a_3^{a_4}}}, \ldots$

Corollary (graduate level): $a \uparrow \uparrow n$ has a p-adic limit as $n \to \infty$ for every p.

Miguel A. Lerma - 2/3/2003