Josephus problem. A group of n people are standing in a circle, numbered consecutively clockwise from 1 to n. Starting with person no. 2, we remove every other person, proceeding clockwise. For example, if $n=6$, the people are removed in the order $2,4,6,3,1$, and the last person remaining is no. 5 . Let $j(n)$ denote the last person remaining. Find some simple way to compute $j(n)$ for any positive integer $n>1$.

Solution. Note that the problem does not ask for a "simple mathematical formula" for $j(n)$, because the solution is not quite easy to express using only ordinary mathematical symbols, however there is a very simple way to compute $j(n)$ using binary notation:

$$
j(n)=\text { left rotation of the binary digits of } n
$$

This means that if $n=x_{1} x_{2} x_{3} \ldots x_{n}$, where the x_{k} are the digits of the binary representation of n (with $x_{1} \neq 0$) then

$$
j(n)=x_{2} x_{3} \ldots x_{n} x_{1}
$$

For instance if $n=366$ (base 10) $=101101110$ (in base 2), then we take the ' 1 ' in the left and move it to the right: 011011101, so $j(366)=011011101$ (base 2) $=111$ (base 10).

For instance for $n=6=110$ (base 2) the last person was $j(6)=5=101$ (base 2).
The answer also can be expressed as $j(n)=2 m+1$, where $m=n-2^{k}, 2^{k}=$ maximum power of 2 not exceeding n, i.e., $2^{k} \leq n<2^{k+1}$. ${ }^{1}$ This can be proved in the following way:
(1) First check that if $n=$ power of 2 , say $n=2^{k}$, then the last person remaining is always no.1. This can be proved by induction on k. For $k=1$ there are only two people, no 2 is removed and no. 1 remains. Then assume that the statement is true for a given k. Assume that $n=2^{k+1}$. Then people no. $2,4,6, \ldots$ are removed. After 2^{k} removals all even numbered people will have been removed, leaving us with exactly the 2^{k} odd numbered people no. $1,3,5, \ldots$ By induction hypothesis we know that in this case the first person (i.e. no. 1) remains, so the statement (that no. 1 remains if $n=$ power of 2) is also true for $k+1$. This completes the induction and proves the statement for every $k \geq 1$.
(2) Finally, if $n=2^{k}+m$, where $0 \leq m<2^{k} \leq n$, we start by removing the m people numbered $2,4,6, \ldots, 2 m$. Now we have a circle with 2^{k} people, and the "first one" (which will remain at the end) at that point is no. $2 m+1$.

Miguel A. Lerma - 3/6/2003

[^0]
[^0]: ${ }^{1}$ Equivalently: $j(n)=2\left(n-2^{\left\lfloor\log _{2} n\right\rfloor}\right)+1$, where $\lfloor x\rfloor=$ greatest integer not exceeding x.

