Sorted Random Numbers. Pick n random numbers $x_{1}, x_{2}, \ldots, x_{n}$ in the interval $[0,1]$ with uniform probability. Let $y_{1} \leq y_{2} \leq \cdots \leq y_{n}$ be those same numbers sorted in non-decreasing order. For each $k=1, \ldots, n$, what is the expected value of y_{k} ?

- Answer: The expected values $E\left[y_{k}\right], k=1, \ldots, n$, divide the interval $[0,1]$ into $n+1$ subintervals of equal length:

$$
E\left[y_{k}\right]=\frac{k}{n+1} \quad(k=1, \ldots, n) .
$$

- First (Calculus) Solution.

Given $\lambda \in[0,1]$, if $y_{k}=\lambda$, then we have that one of the n given numbers must be $\lambda, k-1$ of them must be $\leq \lambda$ (probability $=\lambda^{k-1}$), and the remaining $n-k$ must be $\geq \lambda$ (probability $\left.=(1-\lambda)^{n-k}\right)$. There are n ways to pick the number that equals λ, and $\binom{n-1}{k-1}$ ways to divide $n-1$ numbers into $k-1$ less than λ and $n-k$ greater than λ, hence the probability density of $y_{k}=\lambda$ is:

$$
f_{k}(\lambda)=n\binom{n-1}{k-1} \lambda^{k-1}(1-\lambda)^{n-k}=k\binom{n}{k} \lambda^{k-1}(1-\lambda)^{n-k}
$$

Consequently, the expected value of y_{k} is

$$
E\left[y_{k}\right]=\int_{0}^{1} \lambda f_{k}(\lambda) d \lambda=\int_{0}^{1} k\binom{n}{k} \lambda^{k}(1-\lambda)^{n-k} d \lambda
$$

The integrand is the coefficient of t^{k-1} in the expansion of

$$
\frac{d}{d t}\{t \lambda+(1-\lambda)\}^{n}
$$

Integrating $\{t \lambda+(1-\lambda)\}^{n}$ respect to λ between 0 and 1 we get:

$$
\int_{0}^{1}\{t \lambda+(1-\lambda)\}^{n} d \lambda=\frac{t^{n+1}-1}{(t-1)(n+1)}=\frac{1}{n+1}\left(1+t+t^{2}+\ldots+t^{n}\right)
$$

Differentiating respect to t :

$$
\frac{d}{d t} \int_{0}^{1}\{t \lambda+(1-\lambda)\}^{n} d \lambda=\frac{1}{n+1}\left(1+2 t+\ldots+n t^{n-1}\right)
$$

The coefficient of t^{k-1} in that expression is the desired expected value:

$$
E\left[y_{k}\right]=\frac{k}{n+1} \quad(k=1, \ldots, n)
$$

- Second (Non-Calculus) Solution.

First, note that if x is a random number picked with uniform probability in an interval $[a, b]$ then its expected value is the midpoint of the interval $E[x]=(a+b) / 2$. This can be proved directly using the definition of expected value, but it can be justified also by
symmetry: if $u=a+b-x$ then u is also a random number with uniform probability in $[a, b]$, so $E[x]=E[u]=E[a+b-x]=a+b-E[x]$, and from here $E[x]=(a+b) / 2$.

Second, we note that for $k=1, \ldots, n$, for fixed $y_{k-1}=a, y_{k+1}=b\left(y_{0}=0 \leq a \leq\right.$ $\left.b \leq 1=y_{n+1}\right), y_{k}$ is a random number with uniform probability in $[a, b]$, hence $E^{\prime}\left[y_{k}\right]=$ $(a+b) / 2=\left(y_{k-1}+y_{k+1}\right) / 2$, where E^{\prime} represents the expected value of y_{k} subject to the condition $y_{k-1}=a$ and $y_{k+1}=b$. Averaging respect to y_{k-1} and y_{k+1} we get

$$
E\left[y_{k}\right]=\frac{1}{2}\left(E\left[y_{k-1}\right]+E\left[y_{k+1}\right]\right)
$$

Hence, $E\left[y_{1}\right], \ldots, E\left[y_{n}\right]$ divide the interval $[0,1]$ into $n+1$ subintervals of equal length, consequently

$$
E\left[y_{k}\right]=\frac{k}{n+1} .
$$

- Third (Simpler Non-Calculus) Solution.

We can get the result by using the following principle of symmetry: When n points are dropped at random on an interval, the lengths of the $n+1$ segments in which they divide the interval have identical distributions. ${ }^{1}$ This principle can be justified in the following way. Instead of dropping n points on a unit interval, we drop $n+1$ points on a circle of length 1 ; then we map each list of points on the circle to a list of points on the unit interval by cutting at the $(n+1)$ th point and straightening the circle. By circular symmetry it is obvious that the lengths of the $n+1$ intervals in which they divide the circle have identical distributions.

Since the lengths of the $n+1$ segments have identical distributions, their expected value must be the same, and since the sum of the lengths is 1 each expected value must be $1 /(n+1)$. From here the desired result follows.

Miguel A. Lerma - 3/17/2005

[^0]
[^0]: ${ }^{1}$ See Frederick Mosteller: Fifty Challenging Problems in Probability with Solutions, Dover Publications, 1965, pp. 59-60.

