
Split Squares. Prove that there are infinitely many squares not multiple of 10 whose rep-
resentation in base 10 can be split into two squares. For instance 72 = 49 can be split 4|9,
where 4 and 9 are squares (4 = 22, 9 = 32); 132 = 169 can be split 16|9, again two squares,
etc. (we exclude multiples of 10 in order to avoid trivial answers like the infinite sequence
49 = 4|9, 4900 = 4|900, 490000 = 4|90000, etc.).

Solution. The fact that the decimal representation of a square z2 (not a multiple of 10) is
the concatenation of two squares x2 and y2 can be expressed with the following system of
equation and inequality:

(1)
10nx2 + y2 = z2

10n−1 < y2 < 10n ,

where x, y, z, n must be positive integers and y and z are not multiple of 10. So we need to
prove that (1) has infinitely many solutions. In fact we will prove more, namely that for any
given positive integer x, (1) has infinitely many solutions. So in the following we assume
that x is any fix given positive integer.

We start by rewriting the equation in the following way:

10nx2 = z2 − y2 = (z + y)(z − y).

Since the left hand side is even, y and z must have the same parity, so the two factors on
the right must be even and we can write z + y = 2p, z − y = 2q for some positive integers p
and q. Then we have z = p + q, y = p − q, and 10nx2 = 4pq, so q = 10nx2/(4p). Hence the
inequality can be written like this:

10(n−1)/2 < p− 10nx2

4p
< 10n/2 .

The expression f(p) = p−10nx2/(4p) is an increasing function of p, and verifies f(10n/2b1/2) =
10(n−1)/2 and f(10n/2b2/2) = 10n/2, where

b1 = 1/
√

10 +
√

1/10 + x2 and b2 = 1 +
√

1 + x2 .

So the inequality becomes
10n/2

2
b1 < p <

10n/2

2
b2 .

Taking decimal logarithms we get
n

2
+ log10 b1 − log10 2 < log10 p <

n

2
+ log10 b2 − log10 2

or equivalently
n < 2 log10 p + α < n + β ,

where, α = 2 log10 (2/b1), β = 2 log10(b2/b1). We note that α and β depend only on x, but
not on p or n, and also that β > 0. Also recall that 4p must be a divisor of 10nx2, and p± q
should not be a multiple of 10. These conditions are met if we set n > 2 and p = 5k for some
0 ≤ k < n. Then the inequality becomes

n < 2k log10 5 + α < n + β ,



or equivalently
n = b2k log10 5 + αc ,

0 < {{2k log10 5 + α}} < β ,

where btc = integer part of t, {{t}} = t − btc = fractional part of t. Since 2 log10 5 > 1,
the condition k < n will be satisfied for every k large enough. On the other hand since
the integer multiples of an irrational number are dense modulo 1, and 2 log10 5 is indeed
irrational, we have that the fractional part of 2k log10 5 is in (0, β) for infinitely many values
of k. So since all the conditions are satisfied for infinitely many values of k, we have that
(1) has infinitely many solutions.

The argument used here can be used to search numerically for specific solutions of (1).
The idea is to pick any positive integer x and assign values 1, 2, 3, . . . to k checking whether
the following conditions are verified:

n = b2k log10 5 + αc > k ,

0 < {{2k log10 5 + α}} < β ,

Example: First we pick any positive value for x, say x = 1. Next we compute 2 log10(5) =
1.397940008 . . . , α = 0.3317713906 . . . , β = 0.4952627696 . . . . Finally we search for values
of k such that

n = b1.397940008k + 0.3317713906c > k ,

0 < {{1.397940008k + 0.3317713906}} < 0.4952627696 .

For instance, for k = 2 we have 1.397940008k + 0.3317713906 = 3.127651407, so k = 2
satisfies the conditions, yielding the solution n = 3, p = 52 = 25, q = 103/(4 · 25) = 10,
y = 25− 10 = 15, z = 25 + 10 = 35. So y2 = 225, z2 = 1225. Hence 352 = 1225 = 1|225 can
be split into 1 = 12 and 225 = 152.
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