ALGEBRA PRELIMINARY EXAM, SEPTEMBER 2019

INSTRUCTIONS: Do **three** problems from each part below. In each problem, full credit requires proving that your answer is correct. You may quote and use theorems and formulas, but if a problem asks you to state or prove one such, you need to provide the full details.

Part 1: Groups, rings and modules

- (1) Prove that there are no simple groups of order 30.
- (2) Let G be a finite group of order m, and let H be a normal subgroup of G of prime order p. Assume that m and p 1 are coprime.
 (a) Compute the order of Aut (H)
 - (a) Compute the order of $\operatorname{Aut}_{\operatorname{Grp}}(H)$.
 - (b) Show that H is contained in the center of G.
- (3) Show that $\mathbb{Z}[X]$ is not a PID. Deduce that a subring of a PID is not necessarily a PID.
- (4) Consider the subring of \mathbb{C} :

$$\mathbb{Z}[\sqrt{-5}] = \{a + bi\sqrt{5} \mid a, b \in \mathbb{Z}\}.$$

(a) Define a norm N on $\mathbb{Z}[\sqrt{-5}]$ by setting $N(a + bi\sqrt{5}) = a^2 + 5b^2$. Prove that $N(zw) = N(z) \cdot N(w)$, and deduce that the units in $\mathbb{Z}[\sqrt{-5}]$ are 1 and -1.

(b) Prove that 2, 3, $1+i\sqrt{5}$, $1-i\sqrt{5}$ are all irreducible nonassociate elements of $\mathbb{Z}[\sqrt{-5}]$.

(c) Prove that $\mathbb{Z}[\sqrt{-5}]$ is not a UFD.

(5) Let R be an integral domain, and recall that the dual of an R-module M is $M^{\vee} = \operatorname{Hom}_{R}(M, R)$.

(a) Show that M^{\vee} is a torsion-free module for any M.

(b) Define a canonical map $\varphi \colon M \to M^{\vee \vee}$. Show that if this map is injective, then M is torsion-free.

(c) Give an example of a module M over an integral domain such that the map φ is not injective.

Part 2: Fields, Galois theory and representation theory

- (1) Let k be a field, $f \in k[X]$ a monic irreducible polynomial of degree n, and K a splitting field of f.
 - (a) Show that [K:k] divides n!.

(b) If $k = \mathbb{F}_p$, show that $[K:k] \leq n$.

- (2) Let ζ₈ = e^{2πi/8} be a primitive root of unity of order 8, and consider the cyclotomic extension Q ⊂ Q(ζ₈). Provide details for the following questions:
 (a) Compute the minimal polynomial of ζ₈ over Q.
 - 1

- (b) Compute the Galois group of the extension.
- (c) How many intermediate extensions (i.e different from \mathbb{Q} and $\mathbb{Q}(\zeta_8)$) are there?
- (3) Determine the Galois group of the polynomial $X^3 2$ over \mathbb{Q} , and describe explicitly all the subfields of the splitting field of this polynomial.
- (4) Find the character table and all the irreducible representations of S_3 ; include details. Write down the decomposition of the regular representation of S_3 into irreducible representations.
- (5) Let G be a finite group, Z its center, and V an irreducible complex representation of G.
 - (a) Show that every element $z \in Z$ acts on V by multiplication by a scalar.
 - (b) Show that $(\dim V)^2 \leq \frac{|G|}{|Z|}$.

Part 3: Linear and homological algebra

(1) Let k be a field. A matrix $A \in M_n(k)$ is nilpotent if $A^k = 0$ for some integer k.

(1) Find all possible Jordan canonical forms of a nilpotent matrix A when n = 5.

(2) Show that if $A^k = 0$ for some integer k, then $A^k = 0$ for some integer $k \leq n$.

(3) Show that the trace of a nilpotent matrix is 0.

(2) Prove the following version of the "four lemma": if

is a commutative diagram of *R*-modules with exact rows, α and γ are epimorphisms δ is a monomorphism, then β is an epimorphism.

- (3) Let G be a finitely generated abelian group of rank r. Show that: (a) $G \otimes_{\mathbb{Z}} \mathbb{Q} \simeq \mathbb{Q}^r$.
 - (b) For infinitely many primes $p, G \otimes_{\mathbb{Z}} \mathbb{Z}/p\mathbb{Z} \simeq (\mathbb{Z}/p\mathbb{Z})^r$.
- (4) Let k be a field, and n and m positive integers. Compute

$$\operatorname{Tor}_{i}^{k[X]}\left(k[X] \oplus \frac{k[X]}{(X^{n})}, k[X] \oplus \frac{k[X]}{(X^{m})}\right)$$

for all $i \ge 0$.

(5) Prove that no nontrivial \mathbb{Z} -module is both projective and injective.