ALGEBRA PRELIMINARY EXAM, FALL 2024

Solve **three** problems from each part below. Full credit requires proving that your answer is correct. You may quote standard theorems and formulas, unless a problem specifically asks you to justify such.

1. GROUPS, RINGS AND MODULES

- (1) Find an explicit isomorphism of groups between $GL_2(\mathbb{F}_2)$ and S_3 .
- (2) Let $G = \operatorname{GL}_3(\mathbb{F}_2)$. You may use the fact that |G| = 168.
 - (a) How many Sylow 3-subgroups does G have?
 - (b) Find an element of order 7 in G. (You may find it useful to look at an action of G on a particular 7-element set).
- (3) Let \mathcal{G} be the category of groups. Let A be the identity functor on \mathcal{G} . Let B be the functor $G \mapsto G^{\text{op}}$ (where $G \mapsto G^{\text{op}}$ is the set G with the multiplication $(a, b) \mapsto ba$).
 - (a) Find all natural transformations from A to A.
 - (b) Find all natural transformations from A to B.
- (4) (a) Let A = F[x] where F is a field. Show that the map

$$\operatorname{Hom}_{A}(F[x, x^{-1}], F[x]) \to \operatorname{Hom}_{A}(F[x, x^{-1}], F[x]/(x-1))$$

induced by the projection $F[x] \to F[x]/(x-1)$ is not onto.

- (b) Show that a direct limit of projective modules is not necessarily projective.
- (5) Let R be the ring defined by three generators x, y, q and three relations yx = qxy; qx = xq; qy = yq.
 - (a) Show that the elements $x^k y^m q^n$, $k, m, n \ge 0$, form a basis of R over \mathbb{Z} .
 - (b) Consider two left *R*-modules M = R/Rx and N = R/Ry. Show that M and N are not isomorphic.

2. Linear Algebra and Galois theory

- (1) Find a complete set of representatives for the similarity classes of 4×4 matrices A satisfying $(A^2 + I_4)^2 = 0$ over the field
 - (a) \mathbb{Q} .
 - (b) \mathbb{F}_2 .
- (2) Let V be an n-dimensional \mathbb{C} -vector space and let $T: V \to V$ be a linear map such that $T^n = 0$ but $T^{n-1} \neq 0$.
 - (a) Show that there is a basis $e_1, \dots e_n$ of V such that $T(e_1) = 0$ and $T(e_i) = e_{i-1}$ for $1 < i \le n$.
 - (b) Suppose $S: V \to V$ is a linear map such that ST = TS. Show that for each $1 \le i \le n$, S preserves the span of $e_1, \dots e_i$.
- (3) Let f be an irreducible polynomial of degree 5 over a field K. Suppose α, β are two roots of f in an algebraic closure of K. Show that the degree

 $[K(\alpha, \beta) : K]$ is either 5, 10, 15 or 20. Which among these values are possible when K is a finite field?

- (4) Let $K = \mathbb{Q}(e^{2\pi i/9}) \subset \mathbb{C}$. Describe all the subfields of K, and for each subfield write down a primitive element over \mathbb{Q} . (You may use the irreducibility of the *n*-th cyclotomic polynomial).
- (5) Determine the Galois group of the polynomial $x^4 + 7x^2 + 7$ over
 - (a) \mathbb{Q} .
 - (b) \mathbb{F}_5 .

3. Commutative Algebra

- (1) Consider the ring $R = \mathbb{C}[x, y]/(y^2 x^4)$
 - (a) Construct a finite map of rings $\mathbb{C}[t] \to R$.
 - (b) Find the Krull dimension $\dim R$.
 - (c) Find the maximal ideal \mathfrak{m} of R such that $R_{\mathfrak{m}}$ is **not** a regular local ring.
- (2) Let A be an Artinian local ring. Show that $\prod_{i=1}^{\infty} A$ is a free A module. (Hint: lift a basis modulo a maximal ideal).
- (3) Let k be a field and suppose R is a complete local k-algebra with maximal ideal \mathfrak{m} and residue field k. Show that R is Noetherian if and only if

$$\dim_k \mathfrak{m}/\mathfrak{m}^2 < \infty$$

(You may assume without proof that the power series ring $k[x_1, \cdots x_n]$ is Noetherian).

(4) Let $\{\mathfrak{p}_i | i \in I\}$ be a family of prime ideals of a commutative ring A. For a subset X of SpecA denote by \overline{X} the closure of X in the Zariski topology. Prove that

$$\cap_i \overline{\{\mathfrak{p}_i\}} = \emptyset$$

if and only if

$$\sum_i \mathfrak{p}_i = A$$

- (5) Let S be a multiplicative subset of a commutative ring A. Construct a bijection between the following sets:
 - (a) the set of ideals \mathfrak{a} of A such that for any $s \in S$ and any $a \in A$, $sa \in \mathfrak{a}$ if and only if $a \in A$;
 - (b) the set of ideals of the localized ring A_S .
 - Let **p** be a maximal element of the set of ideals of A that do not intersect with S. Show that **p** is prime.