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Preface

This book is about the theory of Markov chains and their long-term dynamical properties.

It is written for advanced undergraduates who have taken a course in calculus-based

probability theory and are familiar with the classical limit theorems such as the Central

Limit Theorem and the Strong Law of Large Numbers. Knowledge of linear algebra and

a basic familiarity with groups are expected. Measure theory is not a prerequisite.

The book covers in depth the classical theory of discrete-time Markov chains with count-

able state space and introduces the reader to more contemporary areas such as Markov

chain Monte Carlo methods and the study of convergence rates of Markov chains. For

example, it includes a study of random walks on the symmetric group Sn as a model of

card shuffling and their rates of convergence. A possible novelty for an undergraduate

text is the book’s approach to studying convergence rates for natural sequences of Markov

chains with increasing state spaces of N elements, rather than for fixed sized chains. This

approach allows for a simultaneous time T and size N asymptotics which reveals, in some

cases, the so-called cut-off phenomenon, a kind of phase transition that occurs as these

Markov chains converge to stationarity. The book also covers martingales and it covers

random walks on graphs as electric networks. The analogy with electric networks reveals

interesting connections between certain laws of Physics, discrete harmonic functions, and

the study of reversible Markov chains, in particular for computations of their cover times

and hitting times. Most of the currently available undergraduate textbooks do not include

these topics in any detail.

The following is a brief summary of the book’s chapters. Chapters 1, 2, and 3 cover the

classical theory of discrete-time Markov chains. They are the foundation for the rest of

the book. Chapter 4 focuses in detail on path properties for simple random walk on Z, a

topic that is also relevant for a future study of Brownian motion. The classical Galton-

Watson branching process is covered in Chapter 5. Chapter 6 introduces the reader to

martingales and some of their applications to Markov chains. It includes a discussion of

the Optional Stopping Theorem and the Martingale Convergence Theorem. Chapter 7

collects material about reversible processes, a large class of processes that can be viewed

as resistor networks. The material is a prerequisite for the following chapters. Chapter 8

6



CONTENTS 7

treats reversible Markov chains as electrical networks, a fruitful approach that was first

introduced by Kakutani in [19] and later popularized by Doyle and Snell in [11]. Markov

chain Monte Carlo algorithms and some of their applications are introduced in Chapter 9.

Chapter 10 introduces the reader to random walks on finite groups and, as an example,

introduces card shuffling. Chapter 11 focuses on rates of convergence for Markov chains.

It introduces the reader to the large N and T asymptotics and the cut-off phenomenon.

Three Appendices collect necessary background material from probability, analysis, and

linear algebra.

The book has more material than a standard one-semester course will cover. It is designed

to lead students from the basics of Markov chains to interesting and advanced topics in

the field. A one-semester introductory course might cover most of Chapters 1-4 and a

selection of topics from Chapters 5 and 9-11.



Chapter 1

Markov Chains: Construction and

Basic Notions

1.1 Introduction

A stochastic process is a mathematical model for the random evolution of a system in

time. More precisely, it is a collection of random variables Xt(ω) on a probability space

Ω, indexed by a time parameter t ∈ I from some index set I, and taking values in a

common state space S.

In this book, the time index set I will always be N0. We call such a process (Xn)n≥0 a

discrete time stochastic process. The random variable Xn gives the position (or state)

at time n. The state space S will always be a discrete set S, either finite or countably

infinite.

The fundamental assumption on the stochastic processes (Xn)n≥0 is the so-called Markov

property. The Markov property can be described informally in the following way: At each

time n, the future positions of the process only depend on the position at time n and not

on the positions of Xs for s < n.

A stochastic process (Xn)n≥0 with discrete state space S that has the Markov property

is called a Markov chain. We will give a precise definition of the Markov property and a

mathematically rigorous construction of a Markov chain in the following section.

The first three chapters of this book cover classical material on Markov chains, such as

their construction, properties, and convergence behavior. These chapters are the founda-

tion for all later chapters.

8



1.2. CONSTRUCTION OF A MARKOV CHAIN 9

1.2 Construction of a Markov chain

1.2.1 Finite-length trajectories

We start with a discrete (finite or countably infinite) state space S. Fix a positive integer

n ≥ 1 and consider the direct product space

Ω = S × S × · · · × S with (n+ 1) factors S

which is denoted by Ω = Sn+1. Recall that this means

Ω = {(x0, x1, ..., xn) |xi ∈ S for 0 ≤ i ≤ n} .

We will think of the index set {0, 1, ..., n} as modeling time. Let π0 be a probability

distribution on S, which we call the initial distribution. Furthermore, let p : S×S → [0, 1]

be a function with the property∑
xj∈S

p(xi, xj) = 1 for all xi ∈ S . (1.1)

Let F = P(Ω) be the power set (the set of all subsets) of Ω. The power set F consists of

all sets of the form

F = F0 × F1 × · · · × Fn with F0, F1, ..., Fn ⊆ S .

(Ω,F) is a σ-algebra (see Appendix B for definitions). We construct a probability P on

(Ω,F) with the use of p in the following way: For all ω = (x0, x1, ..., xn) ∈ Ω, define

P(ω) = π0(x0) p(x0, x1) p(x1, x2) · · · p(xn−1, xn) , (1.2)

and from this for all F ∈ F , since Ω is discrete,

P(F ) =
∑
ω∈F

P(ω) .

We verify that (1.1) and (1.2) imply
∑

ω∈Ω P(ω) = 1. Thus (Ω,F ,P) defines a probability

space. Next, we consider the coordinate random variables X0, X1, ..., Xn on (Ω,F ,P)

defined by

Xi(ω) = xi for ω = (x0, x1, ..., xn) ∈ Ω, 0 ≤ i ≤ n .

As a consequence of this construction, conditional probabilities involving the coordinate

random variablesXi have the following important property, called the Markov property:
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Proposition 1.2.1 (Markov property). Let (Ω,F ,P) be the probability space as

defined above and (Xk)0≤k≤n the random vector whose components are the coordi-

nate random variables as defined above. Then for all 0 ≤ i ≤ n − 1 and for all

x0, x1, ..., xi+1 ∈ S,

P(Xi+1 = xi+1 |X0 = x0, ..., Xi = xi)

= P(Xi+1 = xi+1 |Xi = xi) = p(xi, xi+1) .
(1.3)

Proof. By (1.2),

P(Xi+1 = xi+1 |X0 = x0, ..., Xi = xi) =
P(X0 = x0, X1 = x1, ..., Xi+1 = xi+1)

P(X0 = x0, X1 = x1, ..., Xi = xi)

=
π0(x0) p(x0, x1) p(x1, x2) · · · p(xi, xi+1)

π0(x0) p(x0, x1) p(x1, x2) · · · p(xi−1, xi)

= p(xi, xi+1) .

Also,

P(Xi+1 = xi+1 |Xi = xi) =
P(Xi = xi, Xi+1 = xi+1)

P(Xi = xi)

=

∑
x0,...,xi−1∈S

π0(x0) p(x0, x1) · · · p(xi−1, xi) p(xi, xi+1)∑
x0,...,xi−1∈S

π0(x0) p(x0, x1) · · · p(xi−1, xi)

=
P(Xi = xi)p(xi, xi+1)

P(Xi = xi)
= p(xi, xi+1) .

This proves (1.3).

Conversely, let us now assume that we are given a probability space (Ω,F ,P), a discrete

set S, and a sequence of random variables X0, X1, ..., Xn with Xi : Ω→ S for 0 ≤ i ≤ n.

Let X0 ∼ π0 and assume that there exists a function p : S × S → [0, 1] such that for all

0 ≤ i ≤ n − 1 the Markov property (1.3) holds. Then it is straightforward to show (via

sequential conditioning) that for all ω = (x0, x1, ..., xn) ∈ Sn+1 we have

P(X0 = x0, ..., Xn = xn) = π0(x0) p(x0, x1) · · · p(xn−1, xn) , (1.4)
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which describes the joint distribution of the random vector (Xk)0≤k≤n.

Notation: From now onwards, we will write Pxy for the conditional probabilities p(x, y) =

P(X1 = y |X0 = x) for x, y ∈ S.

Definition 1.2.1. We call (Xk)0≤k≤n as constructed above a homogeneous

Markov chain of length n with state space S, one-step transition proba-

bilities Pxy, x, y ∈ S, and initial distribution π0.

Note: The Markov property (1.3) implies

P(Xi+1 = xi+1, ..., Xm = xm |X0 = x0, X1 = x1, ..., Xi = xi) =

P(Xi+1 = xi+1, ..., Xm = xm |Xi = xi) for i+ 1 ≤ m ≤ n,

and more generally,

P(Xi+k = xi+k, ..., Xm = xm |X0 = x0, X1 = x1, ..., Xi = xi) =

P(Xi+k = xi+k, ..., Xm = xm |Xi = xi) for 1 ≤ k and i+ k ≤ m ≤ n . (1.5)

As already mentioned, we think of the index k for (Xk)0≤k≤n as denoting time. If we

consider time i as the presence, then (1.5) can loosely be summarized by saying “Given

the present state of the Markov chain, future events and past events for the chain are

probabilistically independent”.

1.2.2 From finite to infinite-length trajectories

Usually, when constructing a Markov chain, we start with a state space S, an initial

distribution π0 on S, and a set of one-step transition probabilities Pxy, x, y ∈ S, that

model the inherent probabilistic properties of the process. As we have seen in the previous

section, this information allows us to compute all finite-dimensional joint distributions of

the random variables Xn, n ≥ 0, for the process (see (1.4)). However, questions such

as “Will the process ever visit state x?” or “How often, on average, does the process

visit state y?” are questions about the long-run behavior of the process. Being able to

answer such questions requires the existence of an underlying probabilistic structure on

the space of all infinte-length trajectories. That is to say, it requires the existence of an

underlying common probability space (Ω,F ,P) on which all random variables Xn : Ω→ S
for n ≥ 0 are defined, and which is consistent with the finite-dimensional joint marginal

distributions as computed in (1.4).

So how do we go from what we already have, namely knowledge of all finite-dimensional

joint distributions, to proving the existence of an underlying common probability space
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for the infinite-length process (Xn)n≥0? The answer lies in the Kolmogorov1 Extension

Theorem. It is a deep result in measure theory, and we will only quote it here. See

the classic work by Kolmogorov [20], or as another reference, [33]. We first define the

necessary consistency conditions that underly Kolmogorov’s theorem.

Definition 1.2.2 (Kolmogorov Consistency Conditions). Let S be a discrete space

with σ-algebra A = P(S) being the power set of S. Assume that for all k ≥ 1 and all

0 ≤ n1 < · · · < nk there exists a k-dimensional probability distribution πn1,...,nk on

Sk. We say that the joint distributions πn1,...,nk satisfy the Kolmogorov consistency

conditions iff

(a) for all k,m ≥ 1 and for all E1, ...., Ek ⊆ S we have

πn1,...,nk+m(E1, ..., Ek,S, ...,S) = πn1,...,nk(E1, ..., Ek) ,

and

(b) for all k ≥ 1 and any permutation σ of (1, ..., k) we have

πn1,...,nk(E1, ..., Ek) = πnσ(1),...,nσ(k)(Eσ(1), ..., Eσ(k)) .

It is straightforward to show using (1.4) that, for a given S, a given initial distribution

π0 on S, and a given set of one-step transition probabilities Pxy, x, y ∈ S, the Kol-

mogorov consistency conditions hold for the joint distributions πn1,...,nk of the random

vectors (Xn1 , ..., Xnk) for all k ≥ 1 and all 0 ≤ n1 < · · · < nk.

Theorem 1.2.2 (Kolmogorov Extension Theorem). Let S be a discrete space. As-

sume that for all k ≥ 1 and 0 ≤ n1 < ... < nk there exists a probability measure

πn1,...,nk on Sk such that this family of probability measures {πn1,...,nk} satisfies the

Kolmogorov consistency conditions (Definition 1.2.2). Then there exists a unique

probability space (Ω,F ,P) and a collection of random variables (Xn)n≥0 on this

space such that for all k ≥ 0 and 0 ≤ n1 < ... < nk the probability distributions

πn1,...,nk are the joint marginals of Xn1 , ..., Xnk .

Notes: (1) Theorem 1.2.2 guarantees the existence and uniqueness of an infinite-length

stochastic process (Xn)n≥0 for a given state space S, a given initial distribution π0 on S,

1Andrey Nikolaevich Kolmogorov (1903-1987), Soviet mathematician. He laid the mathematical foun-

dations of modern Probability theory.
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a given set of one-step transition probabilities Pxy, x, y ∈ S, and for which the Markov

property holds. By Theorem 1.2.2, Markov chains as defined in Definition 1.2.3 exist.

(2) Usually, we will not know the space Ω explicitly, and in fact, won’t need to know it.

What we do need to know and work with are the finite-dimensional joint distributions

of the random variables (Xn)n≥0, from which we can compute probabilities for events

defined for infinite-length trajectories by applying the continuity property of probability

(see Lemma B.1.1).

(3) For intuition, we can always think of Ω as the so-called canonical path space SN0

which is the space of all infinte-length trajectories (i.e., sample paths) for the process

(Xn)n≥0. The random variables Xn are then projections onto the nth coordinate: If

ω ∈ SN0 with ω = (ω0, ω1, ....), then Xn(ω) = ωn. Theorem 1.2.2 guarantees the existence

and uniqueness of a probability measure Ppath on SN0 (to be precise, on the induced σ-

algebra on SN0) which is consistent with the finite-dimensional marginals computed in

(1.4). More precisely, Ppath is the push-forward measure to SN0 under (Xn)n≥0 of the

probability measure P on Ω.

(4) The canonical path space SN0 is uncountable.

We are now ready for the definition of a Markov chain (Xn)n≥0.

Definition 1.2.3 (Markov chain). Let S be a finite or countably infinite set.

• A discrete-time stochastic process (Xn)n≥0 with state space S is called a

Markov chain if for all n ≥ 0 and all states x0, ..., xn−1, x, y ∈ S,

P(Xn+1 = y |X0 = x0, ..., Xn−1 = xn−1, Xn = x) = P(Xn+1 = y |Xn = x)

(1.6)

whenever both conditional probabilities are well-defined.

• If, in addition, the conditional probabilities (1.6) do not depend on time n, we

call the Markov chain time-homogeneous or simply homogeneous. We will

then use the notation Pxy = P(X1 = y |X0 = x) for x, y ∈ S and call the Pxy

the one-step transition probabilities for the homogeneous Markov chain.

• If X0 ∼ π0, we call π0 the initial distribution of the Markov chain.

Note: Unless otherwise noted, we will always work with time-homogeneous Markov

chains.
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Since we will always work with a discrete state space S, we can take S = {0, 1, ..., N}, or

in the infinite case, S = N0. Using the natural ordering of the elements in S, it will often

be convenient to write the transition probabilities Pxy in matrix format. This results in

the (finite or infinite) one-step transition matrix, or simply transition matrix,

P =


P00 P01 · · · P0N

P10
... · · · ...

...
... · · · ...

PN0 · · · · · · PNN

 or P =


P00 P01 P02 · · ·
P10 P11 · · · · · ·

...
...

...
...

 .

Definition 1.2.4. A square matrix P is called a stochastic matrix, if

• all matrix entries are nonnegative, and

• each row sums to 1.

The transition matrix P for a Markov chain is always a stochastic matrix.

Note: In working with an infinite transition matrix P, we will use the same basic formal

rules for matrix addition and matrix multiplication that hold for finite matrices. For

example, if P and P′ are two infinite transition matrices for infinite state space S, then

their product PP′ is the matrix P′′ with entries P ′′xy =
∑

z∈S PxzP
′
zy. In general, matrix

multiplication for infinite matrices is not associative. However, matrix multiplication for

infinite stochastic matrices is associative (see Corollary A.4.4 in Appendix A).

Proposition 1.2.3. Let (Xn)n≥0 be a Markov chain on state space S. Let i ≥ 1

and xi ∈ S. Consider time i as representing the presence. Then conditional on the

event {Xi = xi}, the past and the future of the process are independent. That is,

for all n > i and for all x0, x1, ..., xi−1, xi+1, ..., xn ∈ S,

P(X0 = x0, ..., Xi−1 = xi−1, Xi+1 = xi+1, ..., Xn = xn |Xi = xi)

= P(X0 = x0, ..., Xi−1 = xi−1 |Xi = xi)P(Xi+1 = xi+1, ..., Xn = xn |Xi = xi) ,

provided all conditional probabilities are defined.

Proof. The statement follows from the familiar fact

P(E ∩ F |G) = P(E |F ∩G)P(F |G)

for conditional probabilities for events E, F , and G, and from the Markov property.
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Definition 1.2.5. Let (Xn)n≥0 be a Markov chain on state space S. A state x ∈ S
is called an absorbing state if Pxx = 1.

Example 1.2.1 (The 2-state chain). The simplest example of a Markov chain is the

2-state chain for which we can take S = {0, 1}. We write the four one-step transition

probabilities P00, P01, P1,0, P11 as entries in a (2× 2)-transition matrix

P =

(
P00 P01

P10 P11

)
=

(
1− a a

b 1− b

)
.

To avoid trivial cases, we assume a, b ∈ (0, 1). We can represent the transition mechanism,

i.e., the information given by P, as a directed, weighted graph whose vertex set is the state

space S and for which a weight assigned to a directed edge is the corresponding one-step

transition probability. If a one-step transition probability Pxy = 0, the graph will not

have a directed edge leading from x to y. We call such a graph the transition graph for

the Markov chain. The transition graph for the 2-state chain is shown in Figure 1.1.

10

a

b

1-a 1-b

Figure 1.1: The 2-state chain

Here Ω can be identified with the set of infinite binary sequences. �

Example 1.2.2 (A non-Markov chain). An box contains one red ball and one green

ball. At each time step, one ball is drawn uniformly at random, its color noted and then,

together with one additional ball of the same color, put back into the box. Define the

following stochastic process (Yn)n≥1 with state space S = {0, 1}: Let Yn = 1 if the nth

ball drawn is red, and let Yn = 0 if the nth ball drawn is green. The process (Yn)n≥1 is

not a Markov chain. Indeed, we see that

P(Y3 = 1 |Y1 = 1, Y2 = 1) =
(1/2)(2/3)(3/4)

(1/2)(2/3)
=

3

4

and

P (Y3 = 1 |Y1 = 0, Y2 = 1) =
(1/2)(1/3)(2/4)

(1/2)(1/3)
=

1

2

are not equal, and so the Markov property (1.3) does not hold for (Yn)n≥1. This process

a special case of Pólya’s Urn which we will introduce in more detail in Section 1.5. �
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Example 1.2.3 (A queuing model). Consider people waiting in line at the post office

waiting for service. At each time interval, the probability that somebody new joins the

queue is p, and the probability that somebody finishes their service and leaves the queue

is q. All people arrive and leave the queue independently of each other. We assume

p, q ∈ (0, 1), and the queue starts with x0 persons in line. Let Xn be the number of people

in line at time n. We have P(X0 = x0) = 1. The process (Xn)n≥0 is a Markov chain with

state space is S = N0 and one-step transition probabilities P00 = 1− p , P01 = p, and

Pxx = (1− p)(1− q) + pq , Px,x+1 = p(1− q) , Px,x−1 = q(1− p)

for x ≥ 1, and 0 otherwise. The transition graph is shown in Figure 1.3

10 2 31− p

p

q(1− p)

p(1− q) p(1− q)

q(1− p)q(1− p) q(1− p)q(1− p)

[(1− p)(1− q) + pq] · · · · · ·

p(1− q)

Figure 1.2

We verify that, as expected,∑
y∈S

P0y = 1 and
∑
y∈S

Pxy = Pxx + Px,x+1 + Px,x−1 = 1 for x ≥ 1 .

This queuing model is an example of a so-called birth/death chain (a Markov chain for

which, at each step, the state of the system can only change by at most 1) which we will

introduce in more detail in Section 1.5. �

1.3 Basic computations for Markov chains

Consider a Markov chain (Xn)n≥0 on (finite or countably infinite) state space S with

initial distribution π0 and transition matrix P. Here we show how various probabilities

associated with (Xn)n≥0 can be computed from π0 and P. First, we will compute the

distributions of the random variables Xn, n ≥ 1.

Note: We will denote the distribution of Xn by πn. By this we mean P(Xn = x) = πn(x)

for x ∈ S. It will be convenient to consider πn as a row vector πn = (πn(x1), πn(x2), ...)

with respect to some natural ordering of the elements x1, x2, ... of S. We will denote the

transpose of πn by πt
n.
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Computing π1: By the law of total probability, we have

π1(y) = P(X1 = y) =
∑
x∈S

π0(x)Pxy

which is the row vector π0 multiplied by the yth column vector of the matrix P. Hence

we get

π1 = π0 P .

Computing π2: Applying again the law of total probability, we get

π2(y) = P(X2 = y) =
∑
x∈S

π0(x)P(X2 = y |X0 = x) , (1.7)

or, alternatively,

π2(y) =
∑
z∈S

π1(z)Pzy

which we can rewrite as

π2(y) =
∑
z∈S

(∑
x∈S

π0(x)Pxz

)
Pzy =

∑
x∈S

π0(x)

(∑
z∈S

Pxz Pzy

)
. (1.8)

The change of summation in the second equality of (1.8) is justified for infinite state

space S because of the absolute convergence of the double sum. Comparing (1.7) and

(1.8) (and by taking π0 to be unit mass at x), we get for the conditional probability

P(X2 = y |X0 = x) which we call the 2-step transition probability from x to y,

P(X2 = y |X0 = x) =
∑
z∈S

Pxz Pzy = [P2]x,y

which is the (x, y)-entry in the square P2 of the one-step transition matrix P. We have

π2 = π0 P2 ,

and by induction,

πn = π0 Pn for all n ≥ 1 . (1.9)

From (1.9) (and by taking π0 to be unit mass at x), we get for all n ≥ 1,

P(Xn = y |X0 = x) = [Pn]x,y

and by homogeneity,

P(Xm+n = y |Xm = x) = [Pn]x,y for all m ≥ 0 .
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Definition 1.3.1. Let (Xn)n≥0 be a Markov chain with transition matrix P. For

n ≥ 1, we call the matrix Pn the n-step transition matrix for the chain. The

entries of Pn are called the n-step transition probabilities. For all x, y ∈ S, we

denote the n-step transition probability from x to y by P n
xy.

Attention: P n
xy 6= (Pxy)

n. The n-step transition probability P n
xy is the (x, y)-entry in the

matrix power Pn.

Notes: (1) For any m,n ≥ 1 we have

Pm+n = Pm Pn ,

and hence

Pm+n
xy =

∑
z∈S

Pm
xz P

n
zy .

(2) If x is an absorbing state, then P n
xx = 1 for all n ≥ 1.

Example 1.3.1. Consider a Markov chain (Xn)n≥0 on S = {1, 2, 3}. Let

P =

 0 0.7 0.3

0.4 0.2 0.4

0.5 0 0.5


and assume the Markov chain starts in state 2. Compute

(a) P(X1 = 3, X3 = 2, X6 = 3)

(b) P(X5 = 2 |X2 = 1, X3 = 3)

(c) P(X3 = 2 |X2 = 3, X4 = 1)

(d) P(X2 = 3, X4 = 1 |X3 = 2).

The transition graph for this chain is shown in Figure ??.

The 2-step and 3-step transition matrices are

P2 =

0.43 0.14 0.43

0.28 0.32 0.4

0.25 0.35 0.4

 P3 =

0.271 0.329 0.4

0.328 0.26 0.412

0.34 0.245 0.415


(use a matrix calculator).

Answers:
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21

3

0.40.3

0.7

0.4

0.5

0.5

0.2

Figure 1.3

(a) P(X1 = 3, X3 = 2, X6 = 3) =

(
3∑

x=1

π0(x)Px3

)
P 2

3,2 P
3
2,3 = (1·0.4) (0.35) (0.412) ≈ 0.06

(b) P(X5 = 2 |X2 = 1, X3 = 3) = P(X5 = 2 |X3 = 3) = P 2
3,2 by the Markov property.

Indeed,

P(X5 = 2 |X2 = 1, X3 = 3) =
P(X5 = 2, X2 = 1, X3 = 3)

P(X2 = 1, X3 = 3)
=
π2(1)P1,3 P

2
3,2

π2(1)P1,3

= P 2
3,2 .

Hence P(X5 = 2 |X2 = 1, X3 = 3) = 0.35.

(c)

P(X3 = 2 |X2 = 3, X4 = 1) =
P(X2 = 3, X3 = 2, X4 = 1)

P(X2 = 3, X4 = 1)
=
π2(3)P3,2 P2,1

π2(3)P 2
3,1

=
0 · 0.4
0.25

= 0 .

(d) By Proposition 1.2.3,

P(X2 = 3, X4 = 1 |X3 = 2) = P(X4 = 1 |X3 = 2)P(X2 = 3 |X3 = 2) .

So

P(X2 = 3, X4 = 1 |X3 = 2) = P2,1
P(X2 = 3, X3 = 2)

π3(2)
= P2,1

π2(3)P3,2

π3(2)
.

We compute π2(3) = 0.4 and π3(2) = 0.26. Hence we get

P (X2 = 3, X4 = 1 |X3 = 2) =
(0.4) (0.4) · 0

0.26
= 0 .

�

In most cases it is too difficult to compute an explicit formula for the n-step transition

matrix Pn for a given Markov chain (unless P is diagonalizable). But for the simplest

case, the 2-state chain, we can find explicit formulas for the n-step transition probabilities

without too much work. We will show this in the next example.
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Example 1.3.2. Recall the 2-state chain from Example 1.2.1. We take S = {0, 1}. The

transition matrix is

P =

(
1− a a

b 1− b

)
for which we assume a, b ∈ (0, 1). Perhaps the easiest approach to compute higher powers

Pn of the transition matrix is via diagonalization (if P is in fact diagonalizable). Since

P is a stochastic matrix, the column vector (1, 1)t is a right eigenvector corresponding to

eigenvalue λ1 = 1. Since trace(P) = 2 − a − b, we know that λ2 = 1 − a − b is also an

eigenvalue. Per our assumptions on a and b, we have −1 < λ2 < 1. So P is diagonalizable.

There exists an invertible 2× 2-matrix U such that

P = U

(
1 0

0 (1− a− b)

)
U−1 .

This implies

Pn = U

(
1 0

0 (1− a− b)n

)
U−1

for all n ≥ 1. Hence each entry P n
ij, i, j ∈ {0, 1}, of the matrix Pn is of the form

αij + βij(1− a− b)n for some constants αij, βij that do not depend on n.

Let us first compute α00 and β00. Since P 0
00 = 1 and P 1

00 = P00 = 1 − a, we get the

following system of equations for computing α00 and β00:

1 = α00 + β00

1− a = α00 + β00(1− a− b)

which yields

α00 =
b

a+ b
and β00 =

a

a+ b
.

Thus P n
00 = b

a+b
+ a
a+b

(1−a−b)n. Since P n
01 = 1−P n

00, we also get P n
01 = a

a+b
− a
a+b

(1−a−b)n.

Similarly, we set P n
10 = α10 + β10(1− a− b)n, and for n = 0 and n = 1, get the system of

equations

0 = α10 + β10

b = α10 + β10(1− a− b)

which yields

α10 =
b

a+ b
and β10 =

−b
a+ b

.

Thus P n
10 = b

a+b
− b

a+b
(1− a− b)n and P n

11 = a
a+b

+ b
a+b

(1− a− b)n.
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Altogether, we have computed the n-step transition matrix

Pn =


b

a+ b
+

a

a+ b
(1− a− b)n a

a+ b
− a

a+ b
(1− a− b)n

b

a+ b
− b

a+ b
(1− a− b)n a

a+ b
+

b

a+ b
(1− a− b)n

 .

An interesting situation arises: Since |1− a− b| < 1, we have

lim
n→∞

Pn =

(
b

a+b
a
a+b

b
a+b

a
a+b

)
.

Hence for any initial distribution π0 on S,

π0P
n = πn

n→∞−−−→ (
b

a+ b
,

a

a+ b
) , (1.10)

and so in the long run, the process “settles down” in the sense that its distribution

approaches a unique limiting distribution, here ( b
a+b

, a
a+b

). We will discuss conditions

under which, more generally, such convergence occurs in Section 3.2. �

Definition 1.3.2. Let (Xn)n≥0 be a Markov chain with state space S. A probability

distribution π on S is called a stationary or invariant distribution if

π(y) =
∑
x∈S

π(x)Pxy for all y ∈ S , (1.11)

or equivalently (with π as a row vector), if

πP = π .

If π is a stationary distribution, It follows by induction that πPn = π for all n ≥ 1. Thus

if π is the initial distribution for a Markov chain, then at each future time n, the Markov

chain will be in distribution π. We then say the Markov chain is in stationarity. A

stationary distribution π represents a sort of equilibrium situation for the Markov chain.

Example 1.3.3. We return to the 2-state chain from Example 1.3.2. Let

π = (
b

a+ b
,

a

a+ b
) .

We directly verify that

πP = π,

and so π is a stationary distribution. Notice that by (1.10), we have lim
n→∞

πn = π for any

initial distribution π0. In the long run, the Markov chain converges to stationarity. We

will discuss this phenomenon in detail in Section 3.2. �
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1.4 Strong Markov Property

Consider a Markov chain (Xn)n≥0 on state space S and with transition probabilities Pxy for

x, y ∈ S. Usually, we observe the Markov chain from time n = 0 onwards. However, the

Markov property guarantees that for any fixed time n0 > 0, the process (Xn0+n)n≥0 is also

a Markov chain and has the same transition probabilities Pxy as (Xn)n≥0. Moreover, the

process (Xn0+n)n≥0 is independent of the past history X0, X1, ..., Xn0−1. Loosely speaking,

for any fixed time n0 > 0, and conditional on the event {Xn0 = x}, the Markov chain

probabilistically “starts afresh” in state x.

What if, instead of conditioning on the event {Xn0 = x}, we waited until the Markov chain

hits x at some random time T , and then observed the process from that time onwards?

It turns out that under certain conditions on the random time T , the process (XT+n)n≥0

is again a Markov chain and has the same transition probabilities as the original chain.

This property is called the strong Markov property. In the following we will make

this precise.

Definition 1.4.1. Let (Xn)n≥0 be a Markov chain. A stopping time T is a

random variable taking values in N0 ∪ {∞} such that for all m ∈ N0, the event

{T = m} can be determined from the values of X0, X1, ...., Xm.

By watching the process from time 0 onwards, we know at any time whether or not a

stopping time T has occurred. At time m, we do not need information about the future of

the process Xm+1, Xm+2, ... to determine whether or not T has occurred at time m. Note

that this is equivalent to saying that for every m ∈ N0, the indicator random variable

1{T=m} is a deterministic function of the random variables X0, X1, ...Xm.

Example 1.4.1. (a) The first hitting time T x = min{n ≥ 1 : Xn = x} of state x is a

stopping time because

{T x = n} = {X1 6= x,X2 6= x, ..., Xn−1 6= x,Xn = x} .

Similarly, the second hitting time T x(2) = min{n > T x : Xn = x}, and defined analogously,

the third hitting time T x(3) and so on, are stopping times as well.

(b) More generally, the first hitting time TA of a set A ⊂ S is a stopping time because

{TA = n} = {X1 /∈ A,X2 /∈ A, ..., Xn−1 /∈ A,Xn ∈ A} .

(c) The last exit time LA defined by

LA = max{n ≥ 0 : Xn ∈ A}
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is not a stopping time because the event {LA = n} depends on whether or not any of the

random variables Xn+m for m ≥ 1 take values in A. �

Theorem 1.4.1 (Strong Markov Property). Let (Xn)n≥0 be a Markov chain with

transition probabilities Pxy for x, y ∈ S and let T be a stopping time. Then con-

ditional on the event {T < ∞}, the process (XT+n)n≥0 is a Markov chain with

the same transition probabilities Pxy, and it is independent of the random variables

X0, X1, ..., XT−1.

Proof. We will show that, conditional on {T <∞} and {XT = x}, the sequence of random

variables (XT+n)n≥0 forms a Markov chain that is independent ofX0, X1, ..., XT−1 and that

proceeds according to the same original transition probabilities, by proving

P(XT+1 = y1, ..., XT+n = yn |Xk = uk for 0 ≤ k < T, XT = x, T <∞)

= Pxy1Py1y2 · · ·Pyn−1yn . (1.12)

First we consider the joint probability

P(XT+1 = y1, ..., XT+n = yn; Xk = uk for 0 ≤ k < T, XT = x, T <∞)

and, using the Law of total probability, rewrite it as the sum

∞∑
s=0

P(XT+1 = y1, ..., XT+n = yn; Xk = uk for 0 ≤ k < T, XT = x, T = s)

=
∞∑
s=0

P(Xs+1 = y1, ..., Xs+n = yn; Xk = uk for 0 ≤ k < s, Xs = x, T = s) .

Using conditioning, we rewrite the last sum as

∞∑
s=0

[P(T = s |Xs+1 = y1, ..., Xs+n = yn; Xk = uk for 0 ≤ k < s, Xs = x)

× P(Xs+1 = y1, ..., Xs+n = yn; Xk = uk for 0 ≤ k < s, Xs = x)] ,

and, after further conditioning, as

∞∑
s=0

[P(T = s |Xs+1 = y1, ..., Xs+n = yn; Xk = uk for 0 ≤ k < s, Xs = x)

× P(Xs+1 = y1, ..., Xs+n = yn |Xk = uk for 0 ≤ k < s, Xs = x)
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× P(Xk = uk for 0 ≤ k < s, Xs = x)] . (1.13)

We now take a closer look at the first two factors in each summand in (1.13). Since T is

a stopping time, the event {T = s} is independent of any event defined by the random

variables Xs+k for k ≥ 1. As a consequence, the first factor in the sum (1.13) is equal to

P(T = s |Xk = uk for 0 ≤ k < s, Xs = x) .

By the Markov property, the second factor in the sum (1.13) is equal to

Pxy1Py1y2 · · ·Pyn−1yn .

Thus the sum (1.13) becomes

Pxy1Py1y2 · · ·Pyn−1yn

∞∑
s=0

P(T = s |Xk = uk for 0 ≤ k < s, Xs = x)P(Xk = uk for 0 ≤ k < s, Xs = x)

= Pxy1Py1y2 · · ·Pyn−1yn

∞∑
s=0

P(T = s,Xk = uk for 0 ≤ k < s, Xs = x)

= Pxy1Py1y2 · · ·Pyn−1ynP(T <∞, Xk = uk for 0 ≤ k < T, XT = x) .

Altogether, we get

P(XT+1 = y1, ..., XT+n = yn |Xk = uk for 0 ≤ k < T, XT = x, T <∞)

=
Pxy1Py1y2 · · ·Pyn−1ynP(T <∞, Xk = uk for 0 ≤ k < T, XT = x)

P(T <∞, Xk = uk for 0 ≤ k < T, XT = x)

= Pxy1Py1y2 · · ·Pyn−1yn

which proves (1.12). This completes the proof of Theorem 1.4.1.

1.5 Examples of Markov Chains

(1) Markov chains derived from a sequence of i.i.d. random vari-
ables

Example 1.5.1. Let X be a discrete random variable taking values in N0 and π =

(p0, p1, p2, ...) its distribution. Consider a sequence (Xn)n≥0 of i.i.d. random variables
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with Xn ∼ X. The sequence (Xn)n≥0 is a Markov chain. Its transition matrix P has

equal rows and is of the form

P =


p0 p1 p2 · · ·
p0 p1 p2 · · ·
...

...
...

...
...

...

 .

Conversely, if (Yn)n≥0 is a Markov chain whose transition matrix has equal rows, then the

random variables Yn, n ≥ 0, are i.i.d. and their distribution is given by any one of the

(equal) rows of the transition matrix. �

Example 1.5.2 (Successive maxima). Consider the above defined sequence (Xn)n≥0 of

i.i.d. random variables. We define the new Markov chain (Mn)n≥0 of successive maxima

by

Mn = max{X0, X1, ..., Xn} for n ≥ 0 .

Note that Mn+1 = max{Mn, Xn+1}. From this we get the transition probabilities

Pxy =


py if y > x∑

0≤i≤x

pi if y = x

0 if y < x .

�

Example 1.5.3 (Random walk on Z). Let Y be a discrete random variable taking values

in Z and µ = (..., µ(−1), µ(0), µ(1), ...) its distribution. Let (Yk)k≥1 be a sequence of i.i.d.

random variables with Yk ∼ Y . We define the process (Sn)n≥0 of successive partial sums

by

Sn =
n∑
k=1

Yk for n ≥ 1

and S0 = 0. The process (Sn)n≥0 is called a random walk on Z with step distribution

µ. At each time interval, the walk takes a step according to µ, and all steps are chosen

independently. The transition probabilities are

P(Sn+1 = y |Sn = x) = Pxy = µ(y − x) for all x, y ∈ Z .

We have S1 ∼ µ. The distribution of S2 = Y1 + Y2 is the convolution µ ? µ defined by

µ ? µ(y) =
∑
x∈Z

µ(x)µ(y − x) for all y ∈ Z .
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We write µ?2 = µ ? µ. From this we derive the distribution of S3 = S2 + Y3. It is µ?3 and

computed by

µ?3(y) = µ?2 ? µ(y) =
∑
x∈Z

µ?2(x)µ(y − x) for all y ∈ Z .

By induction we get Sn ∼ µ?n where

µ?n(y) =
∑
x∈Z

µ?(n−1)(x)µ(y − x) for all y ∈ Z .

Thus the n-step transition probabilities for a random walk on Z are

P n
xy = µ?n(y − x) for all x, y ∈ Z .

�

The following example is a special case of Example 1.5.3.

Example 1.5.4 (Simple random walk on Z). Let p ∈ (0, 1). Random walk (Sn)n≥0 with

step distribution µ defined by µ(1) = p and µ(−1) = 1 − p is called simple random

walk on Z. We can best visualize trajectories of simple random walk on Z by plotting

the location of the walk against time (adding connecting line segments). Figure 1.4 shows

a sample trajectory of finite length.

Sn

1 2 3
0

n time

Figure 1.4: Simple random walk on Z

�

We discuss simple random walk on Z in detail in Chapter 4.

(2) Birth/death chains

A birth/death chain is a Markov chain whose state space is a set of consecutive integers

and which can only possibly move from x to x+ 1 (a birth), or from x to x− 1 (a death),
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or stay in place in one step. Usually, the state space S will be either N0 or Z, or for the

finite-state case, {0, 1, ..., N}. The transition probabilities are

Pxy =


qx if y = x− 1

px if y = x+ 1

rx if y = x

0 otherwise

with px + qx + rx = 1 for all x ∈ S. A transition graph is shown in Figure 1.5.

10 2 3r0

p0

q1

p1 p2

q2 q4

p3

q3

r1 r2 r3

Figure 1.5: Birth/death chain

Birth/death chains frequently arise as models for real-life processes. Due to their relatively

simple structure, they can often be analyzed in detail.

(3) Random walks on graphs

A graph G(V,E) consists of a finite or countably infinite vertex set V and an edge set

E. The edge set E consists of unordered pairs {v, w} of vertices v, w ∈ V with v 6= w.

We say two vertices v and w are neighbors if {v, w} ∈ E. Graphically, this means that

the vertices v and w are joined by a line segment. If {v, w} ∈ E, we write v ∼ w. The

degree deg(v) of a vertex v is defined as the number of neighbors of v.

Simple random walk on G(V,E) is a Markov chain (Xn)n≥0 with state space S = V

and transition probabilities

Pvw =

{
1/ deg(v) if v ∼ w

0 otherwise .

At each step, the Markov chain chooses its next location (vertex) uniformly at random

from the neighbors of its current location.

Example 1.5.5. Consider simple random walk on the following graph G(V,E) in Figure

1.6. The state space is V = {1, 2, 3, 4, 5} and the transition matrix is
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2

1

4

5

3

Figure 1.6

P =


0 1

2
1
2

0 0
1
3

0 1
3

0 1
3

1
4

1
4

0 1
4

1
4

0 0 1
2

0 1
2

0 1
3

1
3

1
3

0

 .

�

Example 1.5.6 (Simple random walk on the hypercube Zk2). Here the vertex set V

consists of the vertices of a unit cube in Rk. Thus V can be identified with the set of

binary k-tuples

V = {(x1, ..., xk) : xi ∈ {0, 1}, 1 ≤ i ≤ k} .

Figure 1.7 shows a picture of Z3
2.

(0, 1, 1)
(1, 1, 1)

(1, 1, 0)

(0, 0, 0) (1, 0, 0)

(0, 0, 1)

(0, 1, 0)

(1, 0, 1)

Figure 1.7: The hypercube Zk2 for k = 3

There are k edges emanating from each vertex. Assume the walk is currently at vertex

v = (x1, ..., xk). For the next step, choose uniformly at random an index j from {1, ..., k}.
If xj = 0, switch it to 1. If xj = 1, switch it to 0. Thus with each step, exactly one of

the entries in the current state, the binary k-tuple v, changes. This is nearest neighbor

random walk on the k-hypercube. �
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Random walk on a weighted graph. A graph G(V,E) may have a positive edge

weight C(v, w) associated with each edge {v, w} ∈ E. If this is the case, the transition

probabilities are proportional to the given edge weights in the following way. Define

C(v) =
∑

w:w∼v C(v, w). The transition probabilities for random walk on a weighted

graph G(V,E) with weight function C : E → R+ are defined by

Pvw =

{
C(v, w)/C(v) if w ∼ v

0 otherwise .

Notice that simple random walk is a special case with C(v, w) = 1 for all edges {v, w} ∈ E.

Example 1.5.7. Consider random walk on the weighted graph shown in Figure 1.8.

2

1

4

5

3

3

4
2

3
1

5
7

Figure 1.8

The transition matrix is

P =


0 5

12
7
12

0 0
5
12

0 1
3

0 1
4

7
16

1
4

0 3
16

1
8

0 0 3
4

0 1
4

0 1
2

1
3

1
6

0

 .

�

Note: In earlier examples, we have introduced the transition graph for a Markov chain. It

is a directed, weighted graph, and every Markov chain has an associated transition graph.

Random walks on weighted graphs, that is, random walks on graphs with undirected edges,

constitute a more special category of Markov chains. Many (but by no means all) Markov

chains can be interpreted as a random walk on an undirected weighted graph which, if

applicable, is often a useful viewpoint for computations. We will discuss random walks

on weighted graphs in detail in Chapter 8.

(4) Urn models
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Urn models have a long history as models for real-world processes such as they arise in

theoretical physics, statistics, population genetics (see [16]). Their set-up always involves

a number of urns (boxes) and balls (often of different or changing color) and a prescribed

scheme by which balls are drawn and returned into urns. When a ball is drawn, it is

assumed to be drawn uniformly at random from all balls in the urn, regardless of color.

The following questions often arise in connection with urn models:

1. What is the distribution of balls of a certain color in a specified urn (or urns) after

n steps?

2. What is the distribution of the waiting time until a specified condition of the system

occurs?

3. What are the asymptotic properties of the system? Will the system settle down in

the long-run to a predictable state?

We introduce several classical urn models.

Ehrenfest chain:

This is a model of gas diffusion through a porous membrane and was suggested by physi-

cists Paul and Tatiana Ehrenfest in 1907. Consider two boxes and N indistinguishable

balls that are distributed between Box 1 and Box 2. At each step, one of the balls is

chosen uniformly at random from the N balls and moved to the opposite box. See Figure

1.9. The number of balls in Box 1 describes the state of the system, and so the state

space is S = {0, 1, ..., N}. The transition probabilities are

Px,x−1 =
x

N
for 1 ≤ x ≤ N, Px,x+1 =

N − x
N

for 0 ≤ x ≤ N − 1, and 0 otherwise .

The Ehrenfest chain is a birth/death chain with “pull towards the center”, as the transi-

tion probabilities that lead towards the center state N/2 (or the nearest integer to N/2)

grow with increasing distance from the center state. We can verify that the following

equations hold: (
N

x

)
Px,x−1 =

(
N

x− 1

)
Px−1,x ,

that is, (
N

x

)
x

N
=

(
N

x− 1

)
N − x+ 1

N
. (1.14)

From this, and since
N∑
x=0

(
N

x

)
= 2N , we conclude that π ∼Bin(N, 1

2
), so

π(x) =

(
N

x

)
1

2N
for x = 0, 1, ..., N,



1.5. EXAMPLES OF MARKOV CHAINS 31

Box 1 Box 2

P4,5

Box 1 Box 2

0 1 2 N − 1 N

1
N−1
N

1
N

3
N

N−1
N

2
N

1
N

N−2
N

2
N

1

Figure 1.9: Ehrenfest chain

is a stationary distribution for the Ehrenfest chain (See Section 7.2 for more on this).

Bernoulli-Laplace model of diffusion:

This model was originally introduced by D. Bernoulli in 1769 and later analyzed by

Laplace in 1812. It is a model for the diffusion of two incompressible liquids. There are

two boxes, and initially there are N blue balls in Box 1 and N green balls in Box 2. At

each step, one ball is chosen uniformly at random from each box (the two choices are

made independently). Then the two chosen balls switch boxes. Note that the number of

balls (molecules) remains the same N in each box throughout the process. See Figure

1.11. The number of blue balls in Box 1 describes the system, and so the state space is

S = {0, 1, ..., N}. The transition probabilities are

Px,x−1 = ( x
N

)2 for 1 ≤ x ≤ N

Px,x+1 = (N−x
N

)2 for 0 ≤ x ≤ N − 1

Px,x = 2x(N−x)
N2 for 1 ≤ x ≤ N − 1

and 0 otherwise. This is a birth/death chain. Since (1.14) holds, we can verify that for

this Markov chain the following equations hold:(
N

x

)2

Px,x−1 =

(
N

x− 1

)2

Px−1,x ,

that is, (
N

x

)2 ( x
N

)2

=

(
N

x− 1

)2(
N − x+ 1

N

)2

.
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Box 1 Box 2

P5,4

Box 1 Box 2

0 1 2 N − 1 N

1 (N−1
N

)2
2N−1

N2

( 1
N

)2

4N−2

N2 2N−1

N2

( 3
N

)2 (N−1
N

)2( 2
N

)2

( 1
N

)2(N−2
N

)2 ( 2
N

)2

1

Figure 1.10: Bernoulli-Laplace model of diffusion

From this, and by using the binomial identity

N∑
x=0

(
N

x

)2

=

(
2N

N

)
,

we conclude that π with

π(x) =

(
N

x

)2

/

(
2N

N

)
for x = 0, 1, ..., N

is a stationary distribution (See Section 7.2). Note that π is a hypergeometric distribution.

It can be interpreted as the distribution of the number of red balls among N balls that

have been drawn uniformly at random and without replacement from a collection of N

red and N green balls.

Wright-Fisher2 model for genetic drift:

The Wright-Fisher model was introduced in 1931 as a model for genetic drift in a fixed size

population. Genetic drift describes the change in relative allele frequencies in a population

over time (the change that is caused by the inherent randomness of the process, but not

by any outside factors). The Wright-Fisher model does not take mutation, selection, or

environmental factors into account. It starts with a population of fixed size N . Each

individual possesses in a certain locus of the chromosome an allele of one of two types,

2Sewall Wright (1889-1988), American geneticist, and Sir Ronald A. Fisher (1890-1962), British statis-

tician and geneticist.
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either type a or type A. We assume generations for this population do not overlap (such

as for annual plants).

The Wright-Fisher chain (Xn)n≥0 describes the evolving count of a specific type of allele,

say type A, over time. Xn is the number of alleles of type A that are present in Generation

n. Assuming the population is haploid (with a single chromosome), the state space is

S = {0, 1, ..., N}. (Xn)n≥0 is a Markov chain. Its transition probabilities are defined by

Pxy =

(
N

y

)( x
N

)y (N − x
N

)N−y
for x, y ∈ S . (1.15)

We can interpret the transition probabilities (1.15) in the following way: The (n + 1)th

generation is created by sampling with replacement from the nth generation with param-

eter p = Xn/N . Or each of the N individuals in the (n+ 1)th generation inherits its allele

type from a uniformly at random chosen parent in the nth generation, and all choices

are independent. Hence the distribution of Xn+1 is binomial with parameters N and

p = Xn/N .

Note that states 0 and N are absorbing states for the Wright-Fisher chain. Eventually,

either allele a or allele A becomes fixated, while the other allele dies out. Of natural interest

is the probability that a particular allele gets fixated. We will answer this question in

Chapter 5.

Moran3 model for genetic drift:

This model was proposed in 1958. As with the Wright-Fisher model, the Moran model

describes the evolution over time of an allele frequency in a fixed size population. Here

generations are modeled as overlapping. At each time step, only one uniformly ran-

domly chosen individual reproduces and passes on its allele type, and another uniformly

randomly (and independently from the first) chosen individual dies. We can model the

process as an urn process: The urn contains N balls of two colors. At each time step,

one ball is chosen uniformly at random, its color noted, and then returned to the urn. A

second ball is chosen uniformly at random and removed from the urn, and in its place

a ball of the color of the first ball is put into the urn. The Moran process (Xn)n≥0 is a

Markov chain on state space S = {0, 1, ..., N} where Xn is the number of alleles of type

A present in the population at time n. The transition probabilities are

Px,x+1 = Px,x−1 =
(N − x)x

N2
Pxx = 1− 2

(N − x)x

N2
.

3Patrick Moran (1917-1988), Australian statistician and geneticist.
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States 0 and N are absorbing states. Note that this is a birth/death chain. We will

compute the probability of eventual fixation in state N (i.e., the state in which the entire

population has allele A) in Chapter 5.

Pólya’s4 Urn:

The following model was introduced by Eggenberger and Pólya ([13]) in 1923: An urn

contains b blue balls and g green balls. At each time step, a ball is drawn uniformly at

random from the urn, its color noted, and then, together with c additional balls of the

same color, put back into the urn. Thus the number of balls in the urn is increasing by

c with each step. Among many other applications, the process can be viewed as a model

for the spread of a contagious disease. It is an example of a so-called reinforced process.

In the following we mention several stochastic processes related to Pólya’s urn model (not

all of which are Markov chains). We will return to Pólya’s urn using martingale theory

in Section 6.6.4.

• Process (Bn)n≥0. Let Bn denote the number of blue balls in the urn at time n. The

process (Bn)n≥0 is a time-inhomogeneous Markov chain on state space S = {b, b + c, b +

2c, ...}. The time dependent transition probabilities are

P(Bn+1 = k + c |Bn = k) =
k

b+ g + cn
, P(Bn+1 = k |Bn = k) = 1− k

b+ g + cn
.

• Process (Bn, Gn)n≥0. Let Gn denote the number of green balls in the urn at time n.

Then Bn + Gn = b + g + cn. The process (Bn, Gn)n≥0 is a time-homogeneous Markov

chain. See Figure 1.11 for an illustration where c = 2. The process has state space

S = {b, b+ c, b+ 2c, ...} × {g, g + c, g + 2c, ...}.

P(6,3),(8,3)Here c = 2 :
P(8,3),(8,5)

Figure 1.11: The process (Bn, Gn)n≥0 for Pólya’s urn

The transition probabilities for the process (Bn, Gn)n≥0 are

P(x,y),(x+c,y) =
x

x+ y
, P(x,y),(x,y+c) =

y

x+ y
for (x, y) ∈ S .

4George Pólya (1887–1985), Hungarian mathematician.
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• Process (Yn)n≥0. We now consider the process (Yn)n≥1 where Yn ∈ {0, 1} with Yn = 1

if the nth ball drawn is blue and Yn = 0 if the nth ball drawn is green. Note that (Yn)n≥1

is not a Markov chain. Indeed,

P(Y3 = 1 |Y2 = 1, Y1 = 1) =
b+ 2c

b+ g + 2c
6= b+ c

b+ g + 2c
= P(Y3 = 1 |Y2 = 1, Y1 = 0) .

The stochastic process (Yn)n≥1 does however have other interesting properties which we

will discuss in the following. First, we introduce the notion of exchangeability for a se-

quence of random variables.

Definition 1.5.1. Let (Zn)n≥1 be a sequence of random variables taking values in

a discrete state space S. We say the stochastic process (Zn)n≥1 is exchangeable if

for all n ≥ 2 and any permutation π of {1, 2, ..., n} the distribution of (Z1, ..., Zn)

is the same as the distribution of (Zπ(1), ..., Zπ(n)).

Note that an exchangeable stochastic process (Zn)n≥1 is a stationary process, that

is, its distribution is invariant under time shifts. More precisely, , for all n, k ≥ 1 and

x1, ..., xn ∈ S,

P(Z1 = x1, ..., Zn = xn) = P(Z1+k = x1, ..., Zn+k = xn) . (1.16)

Indeed, Property (1.16) follows from exchangeability, since

P(Z1 = x1, ..., Zn = xn, Zn+1 ∈ S, ..., Zn+k ∈ S)

= P(Z1 ∈ S, ..., Zk ∈ S, Zk+1 = x1, ..., Zk+n = xn) .

In particular, the random variables Zn, n ≥ 1, have identical distribution.

We now show that the process (Yn)n≥1 connected with Pólya’s urn is exchangeable. Let

n ≥ 1, 0 ≤ k ≤ n and consider the n-tupel ωn = (1, ..., 1, 0, ..., 0) with exactly k 1’s. We

write P(ωn) as a product of successive conditional probabilities:

P(ωn) = P (Y1 = 1, ..., Yk = 1, Yk+1 = 0, ..., Yn = 0) =

b

(b+ g)

(b+ c)

(b+ g + c)
· · · (b+ (k − 1)c)

(b+ g + (k − 1)c)

g

(b+ g + kc)

(g + c)

(b+ g + (k + 1)c)
· · · (g + (n− k − 1)c)

(b+ g + (n− 1)c)
.

Similarly, for any reordering of the k 1’s and the (n− k) 0’s resulting in a binary n-tuple

ω̃n, we can write P(ω̃n) as a product of n successive conditional probabilities. In this

product, the denominator will remain the same (r+g)(r+g+c) · · · (r+g+(n−1)c). The

product in the numerator will also remain the same, but the factors will appear reordered
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according to the reordering of the 1’s and 0’s in ω̃n. From this we see that P(ω̃n) = P(ωn),

and so (Yn)n≥1 is exchangeable.

Proposition 1.5.1. Consider Pólya’s urn with parameters b, g, c. Let Xn =∑n
i=1 Yi be the number of blue balls drawn up to time n. Then

P(Xn = k) =

(
n

k

)
b(b+ c) · · · (b+ (k − 1)c)g(g + 1) · · · (g + (n− k − 1)c)

(b+ g)(b+ g + c) · · · (b+ g + (n− 1)c)
.

Proof. The formula follows from exchangeability of the process (Yn)n≥1 and the above

formula for P(ωn).

Recall that Bn = b + cXn. The distribution of Xn is called the Pólya-Eggenberger

distribution. We point out a few special cases:

(a) For c = 0, we have sampling with replacement. In this case the distribution of Xn

is the binomial distribution Bin(n, b
b+g

).

(b) For c = −1, we have sampling without replacement. The distribution of Xn is the

hypergeometric distribution with parameters n, (b+ g), b.

(c) And for the special case b = g = c = 1, the distribution of Bn, the number

of blue balls in the urn at time n, is uniform distribution on {1, 2, ..., n+ 1} for

n ≥ 1:

P(Bn = k) = P(Xn = k − 1) =

(
n

k − 1

)
(k − 1)!(n− (k − 1))!

(n+ 1)!
=

1

n+ 1
.

The result of Proposition 1.5.1 can easily be generalized to a k-color Pólya’s urn. For

this process, we consider k distinct colors C1, ..., Ck. The process starts with ci balls of

color Ci, i = 1, ..., k, in the urn. At each step, a ball is drawn uniformly at random, its

color noted and then, together with c additional balls of the same color, put back into the

urn. The following result will be useful for a later chapter.

Proposition 1.5.2. Consider a k-color Pólya’s urn that starts with 1 ball of each

color and for which c = 1. Let X i
n, i = 1, .., k, denote the number of balls of color

Ci that are in the urn after n time steps. For any time n ≥ 1, the random vector

(X1
n, ..., X

k
n) is uniformly distributed over the set

Vn = {(x1, ..., xk) ∈ (Z+)k : x1 + · · ·+ xk = n+ k} .
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Proof. We first note that

|Vn| =
(
n+ k − 1

k − 1

)
since |Vn| is equal to the number of ways in which n indistinguishable balls can be dis-

tributed over k distinguishable boxes (empty boxes are allowed). Fix n ≥ 1, a state

(x1, ..., xk) ∈ Vn, and set xi = 1 + ai for i = 1, ..., k. For Pólya’s urn to be in state

~x = (x1, ..., xk) at time n, color Ci was drawn exactly ai times for i = 1, ..., k. This can

happen in

(
n

a1 a2 ... ak

)
ways, according to the ordering in which the colors were drawn.

By exchangeability, all orderings are equally likely to occur (we also see this by directly

computing the probability of occurrence of a specific ordering of colors drawn). Thus

P((X1
n, ..., X

k
n) = ~x) =

(
n

a1 a2 ... ak

)
a1!a2! · · · ak!

k(k + 1) · · · (n+ k − 1)

=
n!(k − 1)!

(n+ k − 1)!
=

(
n+ k − 1

k − 1

)−1

.

We return to the 2-color Pólya’s urn. The exchangeability property of (Yn)n≥1 implies

that (Yn)n≥1 is a stationary process and, in particular, that the probability of drawing a

blue ball is the same at each step n and equal to P(Y1 = 1) = b
b+g

. So the process (Yn)n≥1

is an infinite sequence of identically distributed (but not independent!) Bernoulli random

variables. A theorem due to de Finetti5 (which we more precisely quote below) states

that the distribution of a sequence of exchangeable and identically distributed Bernoulli

random variables is a weighted average of the distributions of i.i.d. Bernoulli random

variables. For a reference, see [16].

Theorem 1.5.3 (de Finetti’s Theorem). Let p0 ∈ (0, 1) and (Yn)n≥1 be an infinite

sequence of identically distributed Bernoulli random variables with P(Y1 = 1) = p0

and P(Y1 = 0) = 1 − p0. Then there exists a probability distribution dF on the

interval [0, 1] such that for all n ≥ 1 and for all x1, ..., xn ∈ {0, 1},

P(Y1 = x1, ..., Yn = xn) =

∫ 1

0

pk (1− p)n−k dF (p)

when x1 + · · ·+ xn = k.

The theorem implies that, conditional on p which is chosen according to the distribution

dF on [0, 1], the random variables (Yn)n≥1 are i.i.d. Bernoulli(p). In other words, to

5Bruno de Finetti (1906-1985), Italian mathematician and statistician.
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generate the distribution of (Yn)n≥1, first choose the success probability p from [0, 1]

according to dF , and then generate a sequence of i.i.d Bernoulli random variables with

success probability p.

It turns out that the distribution dF is determined by its moments. This fact (which we

do not prove) allows us to compute dF . Let mk denote the kth moment of the distribution

dF for k ≥ 1. Since

P(Y1 = 1, Y2 = 1, ..., Yk = 1) =

∫ 1

0

pk dF (p) ,

we have

mk = P(Y1 = 1, Y2 = 1, ..., Yk = 1) .

A straightforward computation (which is left as an exercise) yields

mk =
Γ( b

c
+ k)Γ( b+g

c
)

Γ( b+g
c

+ k)Γ( b
c
)

which we recognize as the kth moment of the beta distribution Beta( b
c
, g
c
). It follows

that the distribution dF in de Finetti’s theorem, as applied to the process (Yn)n≥0 for

the 2-color Pólya’s urn, is Beta( b
c
, g
c
). For the special case b = g = c, this distribution is

Beta(1, 1) ∼ Unif([0, 1]). We will say more about Pólya’s urn model in Section 6.6.4.

1.6 Irreducibility and class structure of the state space

The notion of irreducibility generalizes the notion of connectivity of graphs to Markov

chains.

Definition 1.6.1 (Irreducibility). Let (Xn)n≥0 be a Markov chain with state space

S and x, y ∈ S.

(a) We say that x leads to y, denoted by x −→ y, if there exists n ≥ 1 such that

P n
xy > 0.

(b) We say that x and y communicate with each other, denoted by x←→ y,

if x −→ y and y −→ x.

(c) We say that the Markov chain is irreducible if for all x, y ∈ S, we have

x −→ y. Otherwise, we say the Markov chain is reducible.

Notes: (1) It follows that x −→ y iff there exists a finite sequence (x, x1, x2, ..., xn−1, y)

of elements in S such that Pxx1 > 0, Px1x2 > 0, ..., Pxn−1y > 0. Such a sequence is called a

path from x to y.
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(2) The relation x ←→ y is symmetric and transitive. Symmetry is obvious from the

definition. Transitivity follows from the fact

P n+m
xz ≥ P n

xyP
m
yz .

Example 1.6.1. Random walk on a connected graph G(V,E) is irreducible. Indeed,

since G is connected, for any vertices x, y ∈ V there exists a sequence of edges

({x, x1}, {x1, x2}, ..., {xn−1, y})

consisting of elements of E. For each edge {u, v} ∈ E, the transition probability Puv is

positive. Hence x −→ y. �

Example 1.6.2. The Wright-Fisher model (introduced in Section 1.5) is reducible: States

1, 2, ..., (N − 1) lead to 0 and to N which are absorbing states. An absorbing state does

not lead to any state other than itself. �

When studying reducible Markov chains, we often decompose the state space S into

smaller, more elementary building blocks. We then study properties of the Markov chain

restricted to these smaller building blocks and later reassemble the state space to deduce

properties of the original chain. The main notion that is relevant for such a decomposition

is the notion of an irreducible closed class, also called a communication class.

Definition 1.6.2. Let (Xn)n≥0 be a Markov chain with state space S and E ⊆ S.

We say that E is an irreducible closed class or a communication class if

(a) for all x, y ∈ E, x←→ y, and

(b) Pyz = 0 for all y ∈ E, z ∈ Ec.

Notes: (1) A Markov chain is irreducible if and only if the entire state space S is the

only irreducible closed class.

(2) An irreducible closed class E for a Markov chain is maximal in the sense that if

E ⊆ F for an irreducible closed class F , then E = F . And furthermore, if E1, E2 are two

irreducible closed classes and E1 ∩ E2 6= ∅, then E1 = E2. (See Exercise 1.17)

Example 1.6.3. Consider the Markov chain on state space S = {1, 2, ..., 6} with transi-
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tion matrix

P =

1 2 3 4 5 6



1 0 0 0 0.1 0 0.9

2 0.1 0.3 0.2 0 0.4 0

3 0 0 1 0 0 0

4 0.5 0 0 0.1 0 0.4

5 0 0.6 0.3 0.1 0 0

6 1 0 0 0 0 0

.

Its transition graph is shown in Figure 1.12.
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5

3

6

Figure 1.12

The irreducible closed classes are circled (dashed) in Figure 1.14. The Markov chain is

reducible. Its irreducible closed classes are R1 = {3} and R2 = {1, 4, 6}. Note that state

3 is an absorbing state. Any absorbing state forms its own singleton irreducible closed

class. �
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3
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Figure 1.13
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1.7 Functions of Markov chains

Often, when we consider a Markov chain, we are only interested in a particular feature of

the elements in the state space and don’t care to distinguish between elements that have

the same feature. We would like to lump together all elements with the same “microscopic

feature” and consider a state space of “macroscopic states”. The question becomes, is the

new process with the smaller and coarser state space still a Markov chain? More precisely,

for a Markov chain (Xn)n≥0 on state space S and a given non-injective function f on S,

when is it true that the process (f(Xn))n≥0 is again a Markov chain?

Example 1.7.1. Let (Xn)n≥0 be the Markov chain on state space S = {x, y, z} with

transition matrix

P =

0 1
2

1
2

0 0 1

1 0 0


and initial distribution µ0 = (1

3
, 1

3
, 1

3
). Consider the function f : S → R defined by

f(x) = f(y) = 0 and f(z) = 1. Define the process (Yn)n≥0 by Yn = f(Xn). Is (Yn)n≥0

a Markov chain? Note that the state space of (Yn)n≥0 is {0, 1} (which we could identify

with the partition {{x, y}, {z}} of S). We compute

P(Y2 = 0 |Y0 = 1, Y1 = 0) =
P(X0 = z, X1 ∈ {x, y}, X2 ∈ {x, y})

P(X0 = z, X1 ∈ {x, y})
=

1

2

and

P(Y2 = 0 |Y0 = 0, Y1 = 0) =
P(X0 ∈ {x, y}, X1 ∈ {x, y}, X2 ∈ {x, y})

P(X0 ∈ {x, y}, X1 ∈ {x, y})
= 0 .

Here the Markov property does not hold, and so (Yn)n≥0 is not a Markov chain. �

Let (Xn)n≥0 be a Markov chain on a discrete state space S and f : S → R a function.

For any xi ∈ Im(f), we set Ai = f−1(xi). Then A = {A1, A2, ...} forms a partition of S.

Any partition A = {A1, A2, ...} of S induces an equivalence relation x ∼ y on S defined by

x ∼ y if x and y belong to the same subset Ai ∈ A. For x ∈ S, we denote the equivalence

class of x by 〈x〉, that is,

〈x〉 = {y ∈ S : y ∼ x} .
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Definition 1.7.1. Let (Xn)n≥0 be a Markov chain with initial distribution µ0 and

let A = {A1, A2, ...} be a partition of its state space S. We say that (Xn)n≥0 is

lumpable for A, if (X̂n)n≥0 with X̂n = 〈Xn〉 is a Markov chain on state space A
with initial distribution µ̂0 given by

µ̂0(Ai) =
∑
x∈Ai

µ0(x) for Ai ∈ A .

Proposition 1.7.1. Let (Xn)n≥0 be a Markov chain with initial distribution µ0 and

let A = {A1, A2, ...} be a partition of its state space S.

(a) If we have

Px,Aj = Py,Aj for all Aj ∈ A and whenever x ∼ y, (1.17)

then the Markov chain is lumpable for the partition A. Assuming x ∈ Ai in

(1.17), the transition probabilities for the lumped chain (X̂n)n≥0 are given by

P̂Ai,Aj = Px,Aj . (1.18)

(b) If (Xn)n≥0 is lumpable for the partition A and if π is a stationary distribution

for (Xn)n≥0, then π̂ defined by

π̂(Ai) =
∑
y:y∈Ai

π(y) for Ai ∈ A

is a stationary distribution for the lumped chain (X̂n)n≥0.

Proof. (a) Assume (1.17) holds. We compute

P(X0 ∈ Ai0 , ..., Xn ∈ Ain) =
∑

x∈Ain−1

P(X0 ∈ Ai0 , ..., Xn−2 ∈ Ain−2 , Xn−1 = x,Xn ∈ Ain)

=
∑

x∈Ain−1

P(Xn ∈ Ain |Xn−1 = x)P(X0 ∈ Ai0 , ..., Xn−2 ∈ Ain−2 , Xn−1 = x)

= Px,AinP(X0 ∈ Ai0 , ..., Xn−1 ∈ Ain−1) for any x ∈ Ain−1 .

Thus

P(Xn ∈ Ain |X0 ∈ Ai0 , ..., Xn−1 ∈ Ain−1) = Px,Ain for any x ∈ Ain−1 .
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This shows that, under lumping of the state space according to the partition A, the

Markov property still holds, and that the transition probabilities for the lumped chain

are given by (1.18).

(b) Assume π is a stationary distribution for (Xn)n≥0 which is lumpable forA = {A1, A2, ...}.
Then distribution π̂ defined by

π̂(Ai) =
∑
y:y∈Ai

π(y) for Ai ∈ A

is a probability distribution on A. We have

∑
Ai∈A

π̂(Ai)P̂Ai,Aj =
∑
Ai∈A

(∑
z∈Ai

π(z)Pz,Aj

)

=
∑
x∈S

π(x)Px,Aj =
∑
y∈Aj

∑
x∈S

π(x)Px,y

=
∑
y∈Aj

π(y) = π̂(Aj) .

Example 1.7.2. Consider a Markov chain (Xn)n≥0 on state space S = {x, y, z, w, v} with

transition matrix

P =

x y z w v


x 1

2
1
6

1
6

0 1
6

y 2
3

0 1
6

1
6

0

z 1
4

1
3

1
6

1
12

1
6

w 7
12

0 1
6

0 1
4

v 1
8

11
24

0 5
12

0

.

We can verify that condition (1.17) is fulfilled for the partition A = {A1, A2} with A1 =

{x, y} and A2 = {z, w, z}, so (Xn)n≥0 is lumpable with respect to A. The transition

matrix P̂ for the lumped chain is

P̂ =

A1 A2( )
A1

2
3

1
3

A2
7
12

5
12

.

�



1.7. FUNCTIONS OF MARKOV CHAINS 44

Computation of P̂k:

Let (Xn)n≥0 be a Markov chain on state space S with |S| = n. Assume that (Xn)n≥0 is

lumpable with respect to the partition A = {A1, ..., Am} of S. Let B be the n×m matrix

whose jth column has 1’s in its coordinates corresponding to the elements in Aj and 0s

everywhere else. Moreover, let A be the m×n matrix whose ith row has the entry 1/|Ai|
in its coordinates corresponding to the elements in Ai and 0s everywhere else. Then we

have

P̂ = APB . (1.19)

We illustrate (1.19) with an example.

Example 1.7.3. Consider the transition matrix P and the partition A = {A1, A2} from

Example 1.7.2. Here

B =


1 0

1 0

0 1

0 1

0 1

 and A =

(
1
2

1
2

0 0 0

0 0 1
3

1
3

1
3

)
.

We have

APB =

(
1
2

1
2

0 0 0

0 0 1
3

1
3

1
3

)


1
2

1
6

1
6

0 1
6

2
3

0 1
6

1
6

0
1
4

1
3

1
6

1
12

1
6

7
12

0 1
6

0 1
4

1
8

11
24

0 5
12

0




1 0

1 0

0 1

0 1

0 1



=

(
1
2

1
2

0 0 0

0 0 1
3

1
3

1
3

)


2
3

1
3

2
3

1
3

7
12

5
12

7
12

5
12

7
12

5
12

 =

(
2
3

1
3

7
12

5
12

)
= P̂ .

�

Note that, as can be seen in the above example, all rows of PB that correspond to elements

in the same subset Ai of the partition are the same. This is the equivalent of condition

(1.17). Left multiplying PB by A has the effect of collapsing all rows corresponding to

elements from the same subset (hence equal rows) into one row. Further left multiplying
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the result by matrix B has the effect of undoing this collapsing of equal rows, thus resulting

back in PB. All this is summarized in the following lemma.

Lemma 1.7.2. Let (Xn)n≥0 be a Markov chain on state space S with transition

matrix P. Assume (Xn)n≥0 is lumpable with respect to the partition A, and let A

and B be the corresponding matrices as defined above. Then

BAPB = PB . (1.20)

Corollary 1.7.3. With the notation and assumptions from Lemma 1.7.2, we have

P̂k = APkB for all k ≥ 1 .

Proof. Use (1.20) and induction on k.

Example 1.7.4 (Random walk on the hypercube and the Ehrenfest chain). We have in-

troduced the Ehrenfest chain (a model of gas diffusion of n particles between two contain-

ers) in Section 1.5. The Ehrenfest chain (Yn)n≥0 is a birth/death chain on S = {0, 1, ..., n}
with transition probabilities

Px,x−1 =
x

n
for 1 ≤ x ≤ n, Px,x+1 =

n− x
n

for 0 ≤ x ≤ n− 1 .

It can be derived from simple random walk on the hypercube Zn2 (see Section 1.5) via

lumping. Recall that Zn2 = {(x1, ..., xn) |xi ∈ {0, 1} for 1 ≤ i ≤ n}. Simple random walk

on Zn2 proceeds by choosing uniformly at random an index k from {1, ..., n} and switching

the kth entry of the current state x ∈ Zn2 from xk to (xk + 1) mod 2. If we identify

the index set {1, ..., n} with the set of distinct balls for the Ehrenfest model, we have a

one-to-one correspondence between the states x ∈ Zn2 and the possible assignments of the

n balls to the two boxes: Ball k is in Box 1 iff xk = 1. The Hamming weight h(x)

which is defined by

h(x) =
n∑
k=1

xk

counts the number of balls in Box 1. The lumpability condition (1.18) holds for simple

random walk (Xn)n≥0 on the hypercube Zn2 and Hamming weight. Indeed, first note that

Px,〈y〉 6= 0 iff |h(x)− h(y)| = 1. We have

Px,〈y〉 =

{
h(x)
n

if h(y) = h(x)− 1
n−h(x)

n
if h(y) = h(x) + 1 .
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Since h(x) is constant on 〈x〉, the above transition probabilities are the same for all

x ∈ 〈x〉. This satisfies (1.18) and shows that the Ehrenfest chain is (Yn)n≥0 = (h(Xn))n≥0

is a lumped version of random walk on the hypercube. We can verify that uniform

distribution on Zn2 , that is π with

π(x) = 1/2n for all x ∈ Zn2 ,

is a stationary distribution (in fact, the unique stationary distribution) for random walk

on the hypercube. It follows that for its lumped version that is the Ehrenfest chain, the

distribution π̂ given by

π̂(y) = |{x ∈ Zn2 |h(x) = y}|/2n =

(
n

y

)
/2n for 0 ≤ y ≤ n

is a stationary distribution (again, the unique stationary distribution). Notice that π̂ ∼
Bin(n, 1

2
). �

Example 1.7.5 (Simple random walk on the discrete circle and random walk on a chain

graph). Consider simple symmetric random walk on the discrete (unit) cycle Zn for n

even. For each 1 ≤ k ≤ n−2
2

, we can lump the points e2πik/n and e−2πik/n and thus

get the partition {{1}, {e2πi/n, e−2πi/n}, ..., {eπi(n−1)/n, e−πi(n−2)/n}, {−1}} of Zn. Because

of symmetry of the random walk on Zn, we easily verify that the lumpability condition

(1.18) holds. The lumped chain can be identified with simple symmetric random walk

on the integers {1, 2, ..., n
2

+ 1} with reflecting boundary at the two endpoints 1 and n
2

+ 1

(that is, P1,2 = 1 and Pn
2

+1,n
2
−1 = 1). See Figure 1.14.

Figure 1.14

We can directly verify that for simple random walk on the discrete cycle, π ∼ Unif(Zn) is

a stationary distribution (in fact, it is the unique stationary distribution). Thus for the

lumped walk on the integers {1, 2, ..., n
2

+ 1}, the distribution π̂ defined by

π̂(y) =
2

n
for 2 ≤ y ≤ n

2
− 1, and

π̂(1) = π̂(
n

2
+ 1) =

1

n
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is a stationary distribution (again, the unique stationary distribution). �

As we will discuss in later chapters, the eigenvalues of the transition matrix P play an

important role in the long-term evolution of the Markov chain. The following proposition

describes the connection between the eigenvalues and eigenvectors of a lumped chain and

those of the original chain.

Proposition 1.7.4. Let (Xn)n≥0 be a Markov chain with tranisition matrix P on

state space S and A = {A1, A2, ...} a partition of S. Assume (Xn)n≥0 is lumpable

for A. Denote the lumped chain by (X̂n)n≥0 and its transition matrix by P̂. Then

we have the following.

(a) Let s be a right eigenvector of P corresponding to eigenvalue λ. We view s

as a function s : S → R. If for each Ai ∈ A, the right eigenfunction s is

constant on Ai, then the projection ŝ : A → R defined by

ŝ(Ai) = s(x) if x ∈ Ai and for all Ai ∈ A

is a right eigenfunction (right eigenvector) of P̂ corresponding to eigenvalue

λ.

(b) Conversely, if ŝ is a right eigenfunction of P̂ corresponding to eigenvalue λ,

then its lift s : S → R defined by s(x) = ŝ(Ai) if x ∈ Ai is a right eigenfunction

of P corresponding to eigenvalue λ.

Proof. (a) Assume s is an eigenfunction of P and x ∈ Ai and y ∈ Aj. We have

(P̂ŝ)(Ai) =
∑
Aj∈A

P̂Ai,Aj ŝ(Aj) =
∑
Aj∈A

Px,Ajs(y) =
∑
Aj∈A

∑
z∈Aj

Px,zs(z)

=
∑
z∈S

Px,zs(z) = (Ps)(x) = λs(x) = λŝ(Ai) .

(b) Assume ŝ is an eigenfunction of P̂ and x ∈ Ai and y ∈ Aj. Let s be the lift (to S) of

ŝ. We have

(Ps)(x) =
∑
z∈S

Px,zs(z) =
∑
Aj∈A

∑
z∈Aj

Px,zs(z) =
∑
Aj∈A

Px,Ajs(y)

=
∑
Aj∈A

P̂Ai,Aj ŝ(Aj) = (P̂ŝ)(Ai) = λŝ(Ai) = λs(x) .
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Corollary 1.7.5. Let (Xn)n≥0 be a Markov chain with tranisition matrix P on state

space S and A = {A1, A2, ...} a partition of S. Assume (Xn)n≥0 is lumpable for

A, and denote the transition matrix for the lumped chain by P̂. Then the set of

eigenvalues of P̂ is a subset of the set of eigenvalues of P.

Exercises

Exercise 1.1. A deck of cards initially consists of 3 cards of which one is black, one is

white, and one is green. At each time interval, a card is selected uniformly at random

from the deck. If it is black, it is removed from the deck. If it is white, it is replaced

into the deck. If the card is green, we replace it by a new black card. For each of the

following processes, determine whether or not the process is a Markov chain. If it is a

Markov chain, give the state space and the transition matrix. Otherwise, give a reason

for why it is not a Markov chain.

(a) (Xn)n≥0 where Xn is the number of black cards in the deck at time n.

(b) (Yn)n≥0 Where Yn) is the number of green cards in the deck at time n.

(c) (Zn)n≥0 where Zn = (Xn, Yn) is the vector that gives the number of black and green

cards in the deck at time n.

Exercise 1.2. Time shift. Let (Xn)n≥0 be a Markov chain on state space S. Show that

for any fixed time n0 > 0, the process (Yn)n≥0 defined by Yn = Xn0+n for n ≥ 0 is a

Markov chain that has the same transition probabilities as (Xn)n≥0 and whose initial

distribution is the distribution of Xn0 .

Exercise 1.3. Let (Xn)n≥0 be a Markov chain on state space S with transition matrix

P. Fix c ∈ N. Show that the process (Yn)n≥0 defined by Yn = Xcn is a Markov chain and

determine its transition matrix.

Exercise 1.4. Consider the following elementary urn model for a chemical reaction: An

urn contains 8 balls of which four are black and four are white. Two balls are randomly

drawn from the urn. If one ball is black and the other ball is white, then the selected balls

are discarded and two green balls are returned to the urn. Otherwise, the selected balls

are returned to the urn. This process continues until the urn contains only green balls.

Let Xn be the random variable “number of black balls in the urn after the n’th draw”.

Give the one-step transition matrix P for this Markov chain.
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Exercise 1.5. Let (Xn)n≥0 be a Markov chain with state space S. Prove that for all

n ≥ 1, for all states x, y ∈ S, and for all subsets A0, ..., An−1 ⊆ S,

P(Xn+1 = y |X0 ∈ A0, ..., Xn−1 ∈ An−1, Xn = x) = Pxy

whenever both sides are well-defined. (Note however that, in general,

P(Xn+1 = y |X0 ∈ A0, ..., Xn−1 ∈ An−1, Xn ∈ An) 6= P(Xn+1 = y |Xn ∈ An)

if the set An is not a singleton set. See Exercise 1.6 for an illustration.)

Exercise 1.6. Let (Xn)n≥0 be a Markov chain with state space S = {0, 1, 2} and transi-

tion matrix

P =

0 1
2

1
2

1 0 0
1
3

1
3

1
3

 .

Show that

P(X2 = 1 |X0 = 1, X1 ∈ {0, 2}) 6= P(X2 = 1 |X0 = 2, X1 ∈ {0, 2}).

Exercise 1.7. Let (Xn)n≥0 be a Markov chain on state space S = {1, 2, 3} with transition

matrix

P =


1
4

3
8

3
8

2
3

1
3

0
1
3

1
6

1
2

 .

Consider the process (Yn)n≥0 that tracks (Xn)n≥0 when it moves a to a new state while

ignoring any holding periods. More precisely, define T0 = 0 and

Tn = min{m > Tn−1 : Xm 6= XTn−1}

for n ≥ 1, and set

Yn = XTn .

Is the process (Yn)n≥0 a Markov chain? If so, determine its transition matrix.

Exercise 1.8. Let (Xn)n≥0 be a Markov chain on state space S.

(a) Define the (trivariate) moving window process (Yn)n≥1 by

Yn = (Xn−1, Xn, Xn+1)

for n ≥ 1. Is (Yn)n≥1 a Markov chain? If so, what are the one-step transition

probabilities?
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(b) Define the (bivariate) moving open window process (Zn)n≥1 by

Zn = (Xn−1, Xn+1)

for n ≥ 1. Is (Zn)n≥1 a Markov chain? If so, what are the one-step transition

probabilities?

Exercise 1.9. Let (Xn)n≥0 be a two-state Markov chain with state space S = {−1, 1}
and transition matrix

P =

(
1− p p

q 1− q

)
.

Show that the moving average process (Zn)n≥1 defined by

Zn =
1

2
(Xn−1 +Xn)

for n ≥ 1 is not a Markov chain.

Exercise 1.10. Let (Yn)n≥1 be an i.i.d. sequence of random variables taking values in a

space Y . Let X0 be random variable taking values in a discrete state space S. We assume

that X0 is independent of the Y1, Y2, Y3, .... Let f : S ×Y → S be a fixed function. Prove

that the process (Xn)n≥0 defined recursively by

Xn+1 = f(Xn, Yn+1) for n ≥ 0

is a Markov chain with state space S. Describe its transition probabilities Pxy for x, y ∈ S.

Exercise 1.11. Let T ′ and T ′′ be stopping times for a Markov chain (Xn)n≥0. Show that

the following are also stopping times for (Xn)n≥0:

(a) T = T ′ + T ′′

(b) T = T ′ ∧ T ′′ := min{T ′, T ′′}
(c) T = T ′ ∨ T ′′ := max{T ′, T ′′}

Exercise 1.12. Consider a Markov chain (Xn)≥0, a stopping time T for the process, and

the sequence of stopping times T ∧ n, n ≥ 1. Show that if P(T <∞) = 1, then

lim
n→∞

T ∧ n = T with probability 1,

and

lim
n→∞

E(T ∧ n) = E(T ).

Exercise 1.13. Let x and y be distinct states of a finite-state Markov chain with |S| = N ,

and suppose x leads to y. Let n0 be the smallest positive integer such that P n0
xy > 0. Prove

that n0 ≤ N − 1.
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Exercise 1.14. Let (Xn)n≥0 be a finite-state Markov chain with state space S and tran-

sition matrix P. Assume |S| = N < ∞ . Prove that (Xn)n≥0 is irreducible if and only

if

P + P2 + · · ·+ PN

is a strictly positive matrix.

Exercise 1.15. Consider a k-color Pólya’s urn with distinct colors C1, ..., Ck. The process

starts with ci balls of color Ci, i = 1, ..., k, in the urn. At each step, a ball is drawn

uniformly at random, its color noted and then, together with c additional balls of the

same color, put back into the urn. Fix a color Ci. Show that the probability of drawing

Ci is constant in time. What is this probability?

Exercise 1.16. Prove that every finite-state Markov chain has at least one irreducible

closed class.

Exercise 1.17. Let (Xn)n≥0 be a Markov chain on state space S. Prove the following:

(a) Any irreducible, closed class E for the chain is maximal in the sense that if E ⊆ F

for an irreducible closed class F , then E = F .

(b) If E1, E2 are two irreducible closed classes for the chain and E1 ∩ E2 6= ∅, then

E1 = E2.

Exercise 1.18. Let (Xn)n≥0 be a Markov chain on state space S and A = {A1, A2, ...} a

partition of S. Assume (Xn)n≥0 is lumpable for A.

(a) Show that if (Xn)n≥0 is irreducible, then so is its lumped version.

(b) Is it true that if the lumped chain is irreducible, then the original chain (Xn)n≥0

must also be irreducible? Prove your answer or give a counter example.



Chapter 2

Long-run Behavior of Markov Chains

2.1 Transience and Recurrence

Definition 2.1.1. Let (Xn)n≥0 be a Markov chain with state space S and x ∈ S.

The first passage time T x to state x is defined by

T x = min{n ≥ 1 : Xn = x} .

If the Markov chain starts in state x, i.e., if X0 = x, we call T x the first return

time. If Xn 6= x for all n ≥ 1, we say T x =∞.

Note that the first passage time T x is a stopping time for the Markov chain. As a

consequence of the strong Markov property, the Markov chain “renews itself” after each

visit to x, that is, the process (Yn)n≥0 defined by Yn = XTx+n is a probabilistic replica of

the Markov chain (Xn)n≥0 with X0 = x.

Proposition 2.1.1. Let (Xn)n≥0 be an irreducible Markov chain with finite state

space S. Then for all x, y ∈ S,

Ex(T y) <∞ .

Proof. Since the Markov chain is irreducible, for any pair of states x, y ∈ S there exists

an integer n(x, y) and an ε(x, y) > 0 such that P
n(x,y)
xy > ε(x, y). Since S is finite, there

exist n = max{n(x, y) : x, y ∈ S} and ε = min{ε(x, y) : x, y ∈ S}, and so

n(x, y) ≤ n and ε(x, y) ≥ ε for all x, y ∈ S .

52
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Writing Px(T y > n) for P(T y > n |X0 = x), we have

Px(T y > n) ≤ (1− ε) ,

and from this, by iteration and repeated application of the Markov property,

Px(T y > kn) ≤ (1− ε)k for k ≥ 1 .

The random variable T y is positive and integer valued, and so

Ex(T y) =
∞∑
m=0

Px(T y > m) .

Note that the probability Px(T y > m) is a decreasing function of m. Thus we get the

upper bound

Ex(T y) =
∞∑
m=0

Px(T y > m) ≤
∞∑
k=0

nPx(T y > kn) ≤ n
∞∑
k=0

(1− ε)k <∞ .

Definition 2.1.2. Let (Xn)n≥0 be a Markov chain with state space S and x ∈ S.

We say

• state x is recurrent if P(T x <∞|X0 = x) = 1,

• state x is transient if P(T x <∞|X0 = x) < 1.

We say a Markov chain is recurrent (resp. transient) if all of its states are recurrent

(resp. transient).

Note that an absorbing state is a recurrent state.

Example 2.1.1. (a) Consider biased random walk on the integers S = {0, 1, 2, 3, 4} with

reflecting boundary at 0 and at 4. See Figure 2.1 for its transition graph. This is an

10 2 3 4

1

1− p

p p

1− p 1

p

1− p

Figure 2.1

irreducible, finite state Markov chain. By Proposition 2.1.1, Ex(T x) <∞ for all x ∈ S. It
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follows that P(T x <∞|X0 = x) = 1 for all x ∈ S, and so all states are recurrent states.

With probability 1, the Markov chain will return to its starting state in finite time. This

is a recurrent Markov chain.

(b) Consider biased random walk on the integers S = {0, 1, 2, 3, 4} with absorbing bound-

ary at 0 and at 4. See Figure 2.2. Both 0 and 4 are absorbing states and are therefore

10 2 3 41
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Figure 2.2

recurrent. States 1, 2, and 3 lead into the absorbing boundary from which the Markov

chain cannot return to its starting state, and therefore 1, 2, and 3 are transient states. For

example for state 2, we have P 2
2,4 = p2 > 0. Thus P(T 2 =∞|X0 = 2) ≥ p2, and therefore

P(T 2 <∞|X0 = 2) ≤ 1− p2 < 1 .

�

To reiterate, a state x is recurrent if the Markov chain, given that it starts in state x, will

return to x in finite time T x with probability 1. The return time T x is a stopping time

for the Markov chain. After the Markov chain has returned to its starting state x, by the

strong Markov property, it will return a second time to x in finite time with probability

1. By successively invoking the strong Markov property, we prove that a Markov chain

revisits a recurrent state x infinitely many times with probability 1. This last fact is often

used as an equivalent characterization of recurrence of a state x. Theorem 2.1.3 below

makes this precise.

Notation: (1) Let V y denote the random variable “number of visits to state y (not

including a possible initial visit at time 0, if the Markov chain starts in state y)” and

Ex(V y) the expected number of visits to state y, given that the Markov chain starts in

state x.

(2) From now onwards, we will use the notation fxy = P(T y <∞|X0 = x).

The following lemma gives the distribution of the random variable V y:

Lemma 2.1.2. Let (Xn)n≥0 be a Markov chain with state space S and x, y ∈ S.

Then for k ≥ 1,

P(V y ≥ k |X0 = x) = fxyf
k−1
yy . (2.1)
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Proof. The hitting (or return) time T y is a stopping time for the Markov chain. Thus

Formula (2.1) follows from the strong Markov property. The reader is asked to flesh out

the proof in Exercise 2.2.

Theorem 2.1.3. Let (Xn)n≥0 be a Markov chain with state space S.

(a) If y ∈ S is recurrent, then

P(V y =∞|X0 = y) = 1

and hence

Ey(V y) =∞ .

Furthermore, P(V y =∞|X0 = x) = fxy for all x ∈ S.

(b) If y is transient, then

P(V y <∞|X0 = x) = 1

and

Ex(V y) =
fxy

1− fyy
<∞

for all x ∈ S.

Proof. (a) By Lemma 2.1.2, P(V y ≥ k |X0 = x) = fxyf
k−1
yy . If y is recurrent, then fyy = 1.

Consequently,

P(V y =∞|X0 = x) = lim
k→∞

P(V y ≥ k |X0 = x) = lim
k→∞

fxyf
k−1
yy = fxy .

Thus if fxy > 0, then Ex(V y) =∞.

(b) Assume y is transient, so fyy < 1. Then

P(V y =∞|X0 = x) = lim
k→∞

P(V y ≥ k |X0 = x) = lim
k→∞

fxyf
k−1
yy = 0 .

So for a transient state y, the random variable V y is finite with probability 1, no matter

what state x the Markov chain starts in (if fxy = 0, then V y ≡ 0).

Recall that the expectation of a nonnegative, integer-valued random variable Y is

E(Y ) =
∞∑
k=1

P(Y ≥ k) .

Thus we have for the expectation of V y,

Ex(V y) =
∞∑
k=1

P(V y ≥ k |X0 = x) =
∞∑
k=1

fxyf
k−1
yy =

fxy
1− fyy

<∞
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for all x ∈ S. This completes the proof of the theorem.

Let y ∈ S. Recall that the indicator function 1y on S is defined by

1y(z) =

{
1 for z = y

0 for z 6= y .

Then

V y =
∞∑
n=1

1y(Xn) ,

and, since Ex(1y(Xn)) = P(Xn = y |X0 = x) = P n
xy, and by the Monotone Convergence

Theorem (see Corollary C.3.2),

Ex(V y) =
∞∑
n=1

P n
xy . (2.2)

Corollary 2.1.4. If y is a transient state, then

lim
n→∞

P n
xy = 0

for all x ∈ S.

The following proposition shows that recurrence is in some sense “contagious”:

Proposition 2.1.5. Let (Xn)n≥0 be a Markov chain with state space S and x, y ∈ S.

If x is recurrent and x −→ y, then

(a) y is also recurrent, and

(b) y −→ x, and fxy = fyx = 1.

Proof. Assume x 6= y. Since x −→ y, there exists a k ≥ 1 such that P k
xy > 0. If we had

fyx < 1, then with probability (1 − fyx) > 0, the Markov chain, once in state y, would

never visit x at any future time. It follows that

P(T x =∞|X0 = x) = 1− fxx ≥ P k
xy(1− fyx) > 0 .

However, since x is recurrent, fxx = 1, and so it must be that fyx = 1. In particular,

y −→ x. Since y −→ x, there exists an ` ≥ 1 such that P `
yx > 0. We have

Ey(V y) =
∞∑
n=1

P n
yy ≥

∞∑
m=1

P `
yxP

m
xxP

k
xy = P `

yxP
k
xy

∞∑
m=1

Pm
xx =∞ ,
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and thus

Ey(V y) =∞ ,

which implies that y is recurrent by Proposition 2.1.3. Switching the roles of x and y in

the argument, yields fxy = 1. This completes the proof.

Notes: (1) It follows from the previous proposition that a recurrent state can never lead

into a transient state. However, a transient state can lead into transient and recurrent

states.

(2) Furthermore, it follows that if two states communicate with each other, then either

both states are recurrent or both states are transient. Hence transience and recurrence

are class properties.

Proposition 2.1.6. Let (Xn)n≥0 be a Markov chain with finite state space S. Then

S contains at least one recurrent state.

Proof. Assume all states in S are transient. Then by Theorem 2.1.3(b), for all x, y ∈ S,

Ex(V y) =
∞∑
n=1

P n
xy <∞ .

Since |S| <∞, we have

∑
y∈S

∞∑
n=1

P n
xy <∞ . (2.3)

Since the iterated double sum in (2.3) converges absolutely, any reordering of the terms

in the summation yields the same answer. However, we have

∞∑
n=1

∑
y∈S

P n
xy =

∞∑
n=1

1 =∞ ,

which is a contradiction. It follows that at least one element in S must be recurrent.

Corollary 2.1.7. An irreducible, finite state Markov chain is recurrent.

As a consequence of Proposition 2.1.6, the state space S of a finite state Markov chain

has at least one irreducible closed class consisting of recurrent states. Note however that

a Markov chain with infinite state space S may be transient, that is, it may not have a

single recurrent state.
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Example 2.1.2 (Success runs). Consider a Markov chain on state space S = N0 with

transition matrix

P =


q0 p0 0 0 · · ·
q1 0 p1 0 · · ·
q2 0 0 p2

...
...

...
. . .

 .

The transition graph is shown in Figure 2.3. We assume that pk ∈ (0, 1) for al k ∈ N0.

10 2 3 4q0

p1 p2 p3 p4p0

q4

q3

q1 q2

Figure 2.3

With this assumption, the chain is irreducible (and therefore either all states are recurrent

or all states are transient). We will compute f00. Due to the special structure of the

transition matrix, for each n ≥ 1, there is exactly one path that starts at 0 and returns

back to 0 for the first time after n steps. That path is 0, 1, 2, ..., n− 1, 0, and so we have

P0(T 0 = n) = p0 p1 · · · pn−2 qn−1

and

P0(T 0 > n) = p0 p1 · · · pn−1

from which we get

P0(T 0 =∞) = lim
n→∞

P0(T 0 > n) = lim
n→∞

n−1∏
k=0

pk .

By Lemma A.5.1,

lim
n→∞

n−1∏
k=0

pk = 0 ⇐⇒
∞∑
k=0

(1− pk) =
∞∑
k=0

qk =∞ .

Since

f00 = 1− P0(T 0 =∞) ,

it follows that the success run chain is recurrent iff
∑∞

k=0 qk = ∞ and transient iff∑∞
k=0 qk <∞. �
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Example 2.1.3. Consider the Markov chain on state space N0 with transition proba-

bilities P00 = P01 = P10 = P12 = 1
2
, and Pk,0 = 1

k2
, Pk,k+1 = k2−1

k2
for k ≥ 2, and zero

otherwise. This is a success run chain for which
∞∑
k=0

qk = 1 +
∞∑
k=2

1

k2
<∞ .

All states of this chain are transient. �

If the Markov chain is reducible and the state space S contains at least one recurrent

state, we consider the decomposition

S = R∪ T

where R is the set of recurrent states and T is the set of transient states. The set

of recurrent states R further partitions into the disjoint union of k irreducible closed

classes R1, ..., Rk (since the relation x ←→ y is symmetric and transitive on R). The

decomposition

S = (R1 ∪ · · · ∪Rk) ∪ T

is called the canonical decomposition of the state space S. Thus, under a reordering of

the states in S, the one-step transition matrix P of a finite state Markov chain can be

written in canonical form as

Pcan =

R1 · · · · · · Rk T



R1 P1

... P2 0

...
. . .

Rk Pk

T · · · T · · · · · · Q

(2.4)

where the top left block is a block diagonal matrix consisting of k square-matrix blocks,

each of which is made up of the one-step transition probabilities for one of the irreducible

closed classes of recurrent states. The rest of the matrix entries (below the horizontal

line) correspond to transition probabilities involving transient states. In this format, the

n-step transition matrix Pn becomes

Pn
can =


Pn

1

Pn
2 0

. . .

Pn
k

· · · Tn · · · · · · Qn

 . (2.5)
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Definition 2.1.3. A square matrix P is called substochastic if

• all matrix entries are nonnegative, and

• each row sum is less than or equal to 1.

Note that Q is a substochastic matrix. By Corollary 2.1.4 we have

lim
n→∞

Qn = 0 .

Example 2.1.4. Recall Example 1.6.3. The Markov chain has state space S = {1, 2, ..., 6}
and transition matrix

P =

1 2 3 4 5 6



1 0 0 0 0.1 0 0.9

2 0.1 0.3 0.2 0 0.4 0

3 0 0 1 0 0 0

4 0.5 0 0 0.1 0 0.4

5 0 0.6 0.3 0.1 0 0

6 1 0 0 0 0 0

.

Its transition graph is shown in Figure 2.4.

2

1

4

5

3

6

Figure 2.4

The irreducible closed classes (circled in gray) are R1 = {3} and R2 = {1, 4, 6}. For this

Markov chain the set of recurrent states is R = R1 ∪ R2 = {1, 3, 4, 6}, and the set of
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transient states is T = {2, 5}. The canonical form of the transition matrix is

Pcan =

3 1 4 6 2 5



3 1 0 0 0 0 0

1 0 0 0.1 0.9 0 0

4 0 0.5 0.1 0.4 0 0

6 0 1 0 0 0 0

2 0.2 0.1 0 0 0.3 0.4

5 0.3 0 0.1 0 0.6 0

from which we read off the sub-matrices

P1 = (1) P2 =

 0 0.1 0.9

0.5 0.1 0.4

1 0 0

 Q =

(
0.3 0.4

0.6 0

)
.

P1 and P2 are stochastic matrices, and Q is a substochastic matrix. �

The canonical decomposition of the state space simplifies the study the dynamical behav-

ior of the Markov chain in that it allows us to restrict our focus to smaller parts of the

state space. If the Markov chain starts in a recurrent state x and x ∈ Rk, the chain will

forever remain in Rk and will visit each state in Rk infinitely often with probability 1. If

the Markov chain has only a finite number of transient states and it starts in one of these

transient states, with probability 1 the Markov chain will enter one of the irreducible

closed classes Rj of recurrent states in finite time. We call the time at which this happens

the time of absorption. From the time of absorption onwards, the chain will remain within

Rj and visit all states in Rj infinitely often with probability 1. We will discuss in detail

questions surrounding absorption in Section 2.3.

2.2 Stationary distributions

In this section we focus on the question of existence and on basic properties of stationary

distributions for a Markov chain. This special class of distributions plays an important

role in the long-term behavior of the Markov chain. We have introduced the notion of a

stationary distribution in Definition 1.3.2. Recall:

Let (Xn)n≥0 be a Markov chain with state space S. A probability distribution π on S is

called a stationary or invariant distribution if

π(y) =
∑
x∈S

π(x)Pxy for all y ∈ S , (2.6)
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or equivalently (with π as a row vector), if

πP = π . (2.7)

Note that for a finite transition matrix P, a stationary distribution π is a nonnegative

left eigenvector corresponding to eigenvalue 1. Since P is stochastic, any constant column

vector is a right eigenvector corresponding to eigenvalue 1, and so P is guaranteed to have

a left eigenvector corresponding to eigenvalue 1. If P is a strictly positive matrix, then

the Perron–Frobenius Theorem (Theorem A.6.1) guarantees that such a left eigenvector

for P can be normalized to a (strictly positive) probability vector. However, for Markov

chains with infinite state space S, results from linear algebra such as the Perron–Frobenius

Theorem are not available.

Since for any stationary distribution π we have πPn = π for all n ≥ 1, once the Markov

chain is in stationary distribution π, it will remain in stationarity forever. We think of

being in stationarity as a kind of equilibrium state for the chain. The notion of probability

flux further explores this.

Definition 2.2.1. Let (Xn)n≥0 be a Markov chain on state space S and π a sta-

tionary distribution for the chain. Let A and B be two disjoint subsets of S. The

probability flux from A to B is defined by

flux(A,B) =
∑
x∈A

∑
y∈B

π(x)Pxy (2.8)

Notice that by (2.7), we have

π(y)
∑
x∈S

Pyx =
∑
x∈S

π(x)Pxy (2.9)

and consequently, ∑
x∈S\{y}

π(y)Pyx =
∑

x∈S\{y}

π(x)Pxy,

which says that

flux ({y},S \ {y}) = flux(S \ {y}, {y})

for all y ∈ S. In fact, more general global balancing equations hold for a Markov chain in

stationarity:

Proposition 2.2.1. Let (Xn)n≥0 be a Markov chain on state space S and π a

stationary distribution for the chain. Consider a proper subset A ⊂ S. Then

flux(A,Ac) = flux(Ac,A). (2.10)
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Proof. Summing both sides of (2.9) over y ∈ A yields

∑
y∈A

∑
x∈S

π(y)Pyx =
∑
y∈A

∑
x∈S

π(x)Pxy

∑
y∈A

(∑
x∈A

π(y)Pyx +
∑
x∈Ac

π(y)Pyx

)
=

∑
y∈A

(∑
x∈A

π(x)Pxy +
∑
x∈Ac

π(x)Pxy

)
.

Subtracting
∑
y∈A

∑
x∈A

π(y)Pyx from both sides in the second line yields (2.10).

Proposition 2.2.2. Let π be a stationary distribution for the Markov chain

(Xn)n≥0. Then π(y) = 0 for any transient state y ∈ S.

Proof. Assume π is a stationary distribution and y is a transient state. We have∑
x∈S

π(x)P n
xy = π(y) for all n ≥ 1 .

By Corollary 2.1.4, we have limn→∞ P
n
xy = 0 for all x ∈ S. By the Bounded Convergence

theorem (see Appendix C), we can interchange limit and summation in the following sum

and get

lim
n→∞

∑
x∈S

π(x)P n
xy =

∑
x∈S

π(x) lim
n→∞

P n
xy = 0 .

So π(y) = 0.

Proposition 2.2.3. Let π be a stationary distribution and π(x) > 0 for some

(necessarily recurrent) state x ∈ S. If x −→ y, then π(y) > 0. As a consequence,

a stationary distribution π is either everywhere strictly positive or everywhere zero

on an irreducible, closed class of recurrent states.

Proof. Since x −→ y, there exists an n such that P n
xy > 0. So

π(y) =
∑
z∈S

π(z)P n
zy ≥ π(x)P n

xy > 0 .

In praxis, how do we compute a stationary distribution? We can always take a brute force

approach and attempt to directly solve the (finite or infinite) system of linear equations

(1.11). Other, often computationally faster, approaches require more knowledge about

the properties of stationary distributions which we will discuss in the following sections.
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2.2.1 Existence and uniqueness of an invariant measure

In this section, we will consider more general measures on S, not only probability mea-

sures. We will return to probability measures in the following section.

Definition 2.2.2. Let (Xn)n≥0 be a Markov chain on a discrete state space S with

transition matrix P. A nonnegative measure µ on S assigns a value µ(x) ∈
[0,∞) to each x ∈ S. We identify µ with a (finite or infinite) nonngegative row

vector. A nonnegative measure µ is called an invariant measure if

µ(y) =
∑
x∈S

µ(x)Pxy for all y ∈ S , (2.11)

or equivalently,

µP = µ .

Note that a Markov chain can have a non-trivial invariant measure, but not a stationary

probability distribution. An example for this is simple symmetric random walk on Z. The

constant measure µ = 1 on Z is an invariant measure (in fact, it is the unique invariant

measure, up to a multiplicative constant), but it cannot be normalized to a probability

measure on Z.

Let x ∈ S. By the strong Markov property, the Markov chain “probabilistically renews”

itself after each visit to x. Thus what happens in between two consecutive visits to x

should, in some sense, be typical for the evolution of the Markov chain in the long run.

The following results will make this precise for the average amount of time a Markov

chain spends in each state. For the analysis to make sense, we will need to assume that

the chain that starts in state x will return to state x in finite time with probability 1, in

other words we need to assume recurrence.

Theorem 2.2.4 (Existence of an invariant measure). Let (Xn)n≥0 be an irreducible,

recurrent Markov chain with state space S. Let x ∈ S be an arbitrary state, and

assume X0 = x. Consider the first return time T x, and define µ(y) to be the expected

number of visits to state y strictly before time T x, that is,

µ(y) = Ex

(
Tx−1∑
n=0

1{Xn=y}

)
= Ex

(
∞∑
n=0

1{Xn=y}1{Tx>n}

)
for y ∈ S . (2.12)

Then 0 < µ(y) < ∞ for all y ∈ S and µ is an invariant measure for the Markov

chain.
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Proof. Note that the definition of µ implies that µ(x) = 1 and∑
y∈S

µ(y) = Ex(T x) . (2.13)

Consider the following probabilities

p̃y(n) = P(1{Xn=y}1{Tx>n} = 1) = Px(X1 6= x, ..., Xn−1 6= x,Xn = y)

for y ∈ S, y 6= x, and n ≥ 1. Note that p̃y(1) = Pxy, and that p̃y(n) = Ex(1{Xn=y}1{Tx>n}).

It follows that

µ(y) =
∞∑
n=1

p̃y(n) for y 6= x .

Conditioning on the state the chain visits at the (n− 1)th step, we get for n ≥ 2,

p̃y(n) =
∑
z 6=x

p̃z(n− 1)Pzy . (2.14)

Summing both sides over n ≥ 2 and adding p̃y(1) yields

p̃y(1) +
∞∑
n=2

p̃y(n) = Pxy +
∞∑
n=2

∑
z 6=x

p̃z(n− 1)Pzy ,

and thus (after changing the order of summation on the right hand side), we get

µ(y) =
∑
z∈S

µ(z)Pzy .

This shows that µ is an invariant measure. Strict positivity of µ follows from essentially

the same proof as for Proposition 2.2.3 (recall that µ(x) = 1 > 0 and the chain is assumed

to be irreducible). Lastly, we show that µ(y) < ∞ for all y ∈ S. Assume µ(y) = ∞ for

some y ∈ S. But since

µ(x) = 1 =
∑
z∈S

µ(z)P n
zx for all n ≥ 1 ,

it follows that P n
yx = 0 for all n ≥ 1, and hence y does not lead to x. This contradicts

the assumption that the Markov chain is irreducible. It follows that 0 < µ(y) <∞ for all

y ∈ S.
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Remark 2.2.5. Theorem 2.2.4 holds more generally (we omit the proof): If the

Markov chain starts in initial distribution π0 and if T is any a.s. finite stopping

time, that is P(T <∞) = 1, such that XT ∼ π0, then µ defined by

µ(y) = Eπ0

(
∞∑
n=1

1{Xn=y}1{T>n}

)
for y ∈ S (2.15)

defines a strictly positive, invariant measure for the Markov chain. Theorem 2.2.4

proves this statement for the special case π0 = δx (unit mass at state x) and T = T x.

Example 2.2.1. An example of a stopping time (other than T x) to which Remark 2.2.5

applies is the commute time between distinct states x and y, denoted by T x↔y. It is

defined by

T x↔y = min{n > T y : Xn = x} , given that X0 = x ,

that is, T x↔y is the time of the first return to x after the first visit to y. Since the Markov

chain does not revisit x after time T y and before time T x↔y, µ(x) in (2.15) becomes

µ(x) = Ex

(
T y−1∑
n=0

1{Xn=x}

)
,

and so µ(x) is the expected number of visits (including the visit at time n = 0) to x before

time T y. Let us use the notation V x
T y for the number of visits to state x before time T y.

Note that Px(V x
T y ≥ 1) = 1 since we are including the starting state x in V x

T y . Then

Px(V x
T y ≥ 2) = Px(T x < T y) .

Invoking the Strong Markov property for the stopping time T x, we get

Px(V x
T y ≥ 3) = [Px(T x < T y)]2 ,

and by induction,

Px(V x
T y ≥ n) = [Px(T x < T y)]n−1 .

This shows that the random variable V x
T y has a geometric distribution, and its expectation

is

µ(x) = Ex(V x
T y) =

∑
n≥1

[Px(T x < T y)]n−1 =
1

Px(T y < T x)
.

(See also Exercise 2.21.) We will return to a discussion of T x↔y in Chapter 8. �
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Theorem 2.2.6 (Uniqueness of the invariant measure). Let (Xn)n≥0 be an irre-

ducible, recurrent Markov chain with state space S and transition matrix P. The

invariant measure µ constructed in Theorem 2.2.4 is the unique invariant measure

up to a positive multiplicative factor.

Proof. Our proof follows the proof given in [6]. Assume ν is an invariant measure for

(Xn)n≥0. Since the Markov chain is irreducible, we have ν(y) > 0 for all y ∈ S. Instead of

working with the transition probabilities Pxy, we will now consider the following modified

transition probabilities P̄xy defined by

P̄xy =
ν(y)

ν(x)
Pyx for all x, y,∈ S .

We recognize that P̄xy are the transition probabilities of the time-reversed chain (see

Section 7.1) whose transition matrix we denote by P̄. It is straightforward to verify that∑
y∈S P̄xy = 1 for all x ∈ S and that the corresponding n-step transition probabilities are

P̄ n
xy =

ν(y)

ν(x)
P n
yx for all x, y,∈ S and n ≥ 1 .

Furthermore, P̄ is irreducible and recurrent. Irreducibility follows from the fact that

P̄ n
xy > 0 ⇐⇒ P n

yx > 0. To show recurrence, note that P̄ n
xx = P n

xx for all n ≥ 1, and

use (2.2) and Theorem 2.1.3. Fix state x. We introduce the following notation for the

Markov chain with P̄ for the probability of visiting x for the first time at time n, given

that the chain starts in state y:

f̄ (n)
yx = Py(T x = n) .

Conditioning on the state visited at time 1, we get the recurrence relation

f̄ (n+1)
yx =

∑
z 6=x

P̄yzf̄
(n)
zx ,

and from this, by using P̄yz = ν(z)
ν(y)

Pzy,

ν(y)f̄ (n+1)
yx =

∑
z 6=x

ν(z)Pzyf̄
(n)
zx . (2.16)

Now recall equation (2.14). We can rewrite equation (2.14) as

ν(x) p̃y(n+ 1) =
∑
z 6=x

(ν(x)p̃z(n))Pzy . (2.17)
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Take a closer look at (2.16) and (2.17): Both equations define a recurrence relation for

sequences (indexed by elements of S) dependent on n. These two (time n dependent)

sequences are

(ν(y) f̄ (n)
yx )y∈S and (ν(x) p̃y(n))y∈S (2.18)

(remember that x is a fixed state). Equations (2.16) and (2.17) define the same recurrence

relation for both sequences in (2.18). At time n = 1, (2.18) becomes

(ν(y) f̄ (1)
yx )y∈S = (ν(y)P̄yx)y∈S and (ν(x) p̃y(1))y∈S = (ν(x)Pxy)y∈S .

But for all y ∈ S, we have ν(y) P̄yx = ν(x)Pxy. So for the base case n = 1, the two

sequences are equal. And since the two sequences are subject to the same recurrence

relation, they are equal for all n ≥ 1. Thus we get from (2.18),

p̃y(n) =
ν(y)

ν(x)
f̄ (n)
yx for all n ≥ 1 . (2.19)

As a last step, we sum both sides of (2.40) over n. We get
∞∑
n=1

p̃y(n) = µ(y) =
ν(y)

ν(x)

∞∑
n=1

f̄ (n)
yx =

ν(y)

ν(x)

where the last equation follows from the recurrence of the chain P̄ (which implies
∑∞

n=1 f̄
(n)
yx =

Py(T x <∞) = 1). Altogether, this shows that ν = ν(x)µ. Hence ν and µ differ only by

the multiplicative factor ν(x). This completes the proof.

Example 2.2.2 (Biased simple random walk on Z). Let p ∈ (0, 1) and p 6= 1
2
. Consider

the Markov chain (Xn)n≥0 on state space Z with transition probabilities

Px,x+1 = p , Px,x−1 = 1− p for all x ∈ Z .

It is called biased simple random walk on Z. Clearly, (Xn)n≥0 is irreducible. Set 1−p = q.

For a nonnegative measure µ on Z we will write µx for µ(x), x ∈ Z. We compute an

invariant measure µ = (..., µ−1, µ0, µ1, ...) for (Xn)n≥0 by solving the system (2.11) which

reads

µx = µx−1p+ µx+1q for x ∈ Z . (2.20)

The linear system (2.20) has at least two distinct solutions (each one up to a multiplicative

constant): One solution is the constant measure µ = (..., 1, 1, 1, ...). A second solution is

the measure µ̃ defined by

µ̃x =

(
p

q

)x
for x ∈ Z .

Note that neither µ nor µ̃ can be normalized to a probability measure on Z. It follows

from Theorem 2.2.6 (uniqueness of an invariant measure for an irreducible, recurrent

chain) that biased simple random walk on Z is transient. �
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2.2.2 Positive recurrence versus null recurrence

Let (Xn)n≥0 be an irreducible, recurrent Markov chain. Let x ∈ S, and consider the

strictly positive measure µ on S as defined in (2.12). By Theorem 2.2.4 and Theorem

2.2.6, the measure µ is the unique invariant measure (up to a multiplicative constant)

for the Markov chain. By (2.3.5), the measure µ can be normalized to a probability

distribution (a stationary distribution) if and only if Ex(T x) < ∞. This motivates the

following definition.

Definition 2.2.3 (Positive recurrence and null recurrence). Let (Xn)n≥0 be a

Markov chain on state space S and assume x ∈ S is a recurrent state.

(a) We say x is positive recurrent if Ex(T x) <∞.

(b) We say x is null recurrent if Ex(T x) =∞.

We will use the notation mx = Ex(T x) for the mean return time to state x. Recall that for

the invariant measure defined in (2.12), we have µ(x) = 1. Thus, if µ can be normalized

to a stationary distribution π, that is, if mx <∞, we get

π(x) =
1

mx

.

The choice of x for the construction of a strictly positive invariant measure µ in Theorem

2.2.4 was arbitrary. By Theorem 2.2.6 (uniqueness), if we had chosen y ∈ S (with y 6= x)

instead of x, the resulting strictly positive invariant measure µ̃ would differ from µ only by

a positive multiplicative constant. It follows that either both µ and µ̃ can be normalized

to a probability measure or both µ and µ̃ cannot be normalized. Hence either both x and

y are positive recurrent or both x and y are null recurrent. We fomulate this result in the

following proposition:

Proposition 2.2.7 (Positive recurrence and null recurrence are class properties).

Let (Xn)n≥0 be a Markov chain on state space S and R ⊆ S an irreducible closed

class of recurrent states. Then either all states in R are positive recurrent or all

states in R are null recurrent.

Recall that an irreducible Markov chain with finite state space is recurrent. By Proposition

2.1.1, we know it is positive recurrent. Hence an irreducible, finite state Markov chain has

a unique stationary distribution.

The following theorem summarizes our findings:
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Theorem 2.2.8. Let (Xn)n≥0 be an irreducible Markov chain on state space S. The

Markov chain has a stationary distribution π if and only if it is positive recurrent.

In the positive recurrent case, the stationary distribution is unique, and it is given

by

π(x) =
1

mx

for x ∈ S .

2.2.3 Stationary distributions for reducible chains

We now consider reducible Markov chains (Xn)n≥0. Recall the canonical decomposition

S = (R1 ∪ R2 ∪ ...) ∪ T of the states space S into irreducible closed classes of recurrent

states Rk and the set of transient states T . For any stationary distribution π for (Xn)n≥0,

we have π(x) = 0 if x ∈ T (Proposition 2.2.2).

If the chain starts in a recurrent state y ∈ Rk, then the chain will remain in Rk forever. In

this case it suffices to study the Markov chain restricted to Rk. Under this restriction, the

Markov chain is irreducible. If Rk consists of positive recurrent states, then there exists

a unique stationary distribution πresRk
on Rk for the restricted chain. We can extend πresRk

to a probability measure πRk on the entire state space S by defining

πRk(z) =

{
πresRk

(z) for z ∈ Rk

0 for z /∈ Rk .
(2.21)

Note that πRk is a stationary distribution for the unrestricted chain (Xn)n≥0 on S.

If the chain starts in a recurrent state x ∈ Rj and the irreducible closed class Rj con-

sist of null recurrent states, then the restricted chain on Rj does not have a stationary

distribution.

In sum: Each irreducible closed class Rk of positive recurrent states contributes a unique

stationary distribution πRk (concentrated on Rk) for the Markov chain (Xn)n≥0 on S.

We will make use of the following fact about stationary distributions (the proof is straight-

forward and left as an exercise):
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Lemma 2.2.9. Let (Xn)n≥0 be a Markov chain on state space S and assume

π1, π2, ..., πk are k stationary distributions for (Xn)n≥0. Then any convex mixture

of the π1, π2, ..., πk is also a stationary distribution for (Xn)n≥0. That is, for any

nonnegative constants c1, c2, ..., ck with
∑k

i=1 ci = 1, the measure

π =
k∑
i=1

ciπ
i

is a stationary distribution for (Xn)n≥0.

The following proposition summarizes our discussion with a description of the stationary

distributions for a reducible Markov chain.

Proposition 2.2.10. Let (Xn)n≥0 be a reducible Markov chain on state space S.

Assume the chain has at least one positive recurrent state and that R1, R2, ..., Rk

are the irreducible closed classes of positive recurrent states for the chain. Then the

stationary distributions π are exactly the distributions of the form

π =
k∑
i=1

ciπRi

with πRi as defined in (2.21), and ci ≥ 0 for 1 ≤ i ≤ k, and
∑k

i=1 ci = 1.

It follows that a reducible (or irreducible) Markov chain with exactly one irreducible closed

class of positive recurrent states has a unique stationary distribution. A reducible chain

with two or more irreducible closed classes of positive recurrent states has infinitely many

stationary distributions. All other Markov chains have no stationary distributions.

2.2.4 Steady state distributions

Definition 2.2.4. Let (Xn)n≥0 be a Markov chain with state space S. Suppose

there exists a probability distribution λ on S such that

lim
n→∞

P n
xy = λ(y) for all x ∈ S , (2.22)

then λ is called the limiting or steady state distribution for the Markov chain.

Note that if a Markov chain (Xn)n≥0 has a limiting distribution λ, then for any initial
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distribution π0 for the chain, we have

lim
n→∞

πn(x) = λ(x) for all x ∈ S .

This follows from averaging (2.22) over all initial states x with respect to π0. Not every

Markov chain has a limiting distribution.

Proposition 2.2.11. If a Markov chain has a limiting distribution λ, then λ is a

stationary distribution, and it is the unique stationary distribution for the chain.

Proof. Assume limn→∞ P
n
xy = limn→∞ P

n+1
xy = λ(y) for all x ∈ S. By the Bounded

Convergence theorem (see Appendix C), we can interchange lim and summation in the

following and get

lim
n→∞

P n+1
xy = lim

n→∞

∑
z∈S

P n
xzPzy =

∑
z∈S

lim
n→∞

P n
xzPzy =

∑
z∈S

λ(z)Pzy = λ(y)

which shows that λ is a stationary distribution. Assume there exists another stationary

distribution π with π 6= λ. If the chain starts in distribution π, it will always stay

in distribution π, so the limiting distribution λ must be equal to π. This shows the

uniqueness of the stationary distribution λ.

Example 2.2.3. Recall the 2-state chain from Example 1.3.3. The unique stationary

distribution π = ( b
a+b

, a
a+b

) is the limiting distribution for the general 2-state chain. �

Example 2.2.4. Consider the Markov chain (Xn)n≥0 on state space S = {0, 1, 2} with

transition matrix

P =

 0 1 0
1
2

0 1
2

0 1 0

 .

We compute

P2 =


1
2

0 1
2

0 1 0
1
2

0 1
2

 and P3 =

 0 1 0
1
2

0 1
2

0 1 0


from which we conclude that P2n+1 = P for all n ≥ 0, and P2n = P2 for all n ≥ 1. Due

to this periodic behavior of the higher order transition matrices, (2.22) cannot hold. This

Markov chain does not have a limiting distribution. Note however that, since (Xn)n≥0 is

irreducible and has finite state space, it is positive recurrent and has a unique stationary

distribution π. The stationary distribution is π = (1
4
, 1

2
, 1

4
). �
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2.3 Absorbing chains

Let (Xn)n≥0 be a reducible Markov chain on state space S. Recall the canonical decom-

position S = (R1 ∪R2 ∪ · · · ) ∪ T .

Definition 2.3.1. A Markov chain that has at least one recurrent state and at least

one transient state is called an absorbing chain.

This section concerns several aspects of the long-term behavior of absorbing chains. We

will focus on the following questions:

1. Given that a Markov chain starts in one of its transient states x ∈ T , what is the

probability that it eventually gets absorbed into a specific irreducible closed class

Rk?

2. What is the probability of eventual absorption into any one of the irreducible closed

classes? If eventual absorption is certain, what is the expected time until absorption?

2.3.1 First step analysis

A first step analysis is a very useful approach for many computations of functionals for

Markov chains, among them absorption probabilities and the expected time until absorp-

tion. It is based on the idea of conditioning on the first step the Markov chain takes. Let

(Xn)n≥0 be a Markov chain. Recall that, by the Markov property, the one step forward

shifted chain

(Yn)n≥0 = (X1+n)n≥0

is a Markov chain that has the same transition probabilities as (Xn)n≥0 and, conditional

on X1 = x, is started in x and independent of X0. A first step analysis approach exploits

this fact. It allows us to write quantities of interest for (Xn)n≥0 in terms of quantities for

(Yn)n≥0 and in the process establishes equations for these quantities.

We demonstrate the approach with the computation of absorption probabilities. Let

(Xn)n≥0 be a Markov chain. We assume that 0 is an absorbing state, that the Markov

chain has other recurrent states, and that the Markov chain has a finite number of transient

states. Let R be the set of recurrent states and T the set of transient states for the chain.

We also consider the stopping time

T = min{n ≥ 0 : Xn ∈ R} .

If the chain starts in a transient state (which we will assume), then T is called the time

of absorption. We also consider the analogous random variable

T̃ min{k ≥ 0 : Yk ∈ R}
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for the shifted chain (Yn)n≥0. Note that T̃ = T − 1.

We assume that the Markov chain starts in a transient state x, and we are interested in

the probability that the chain will eventually get absorbed in state 0. That is, we would

like to compute the probability

P(XT = 0 |X0 = x) .

We will use the notation ay = P(XT = 0 |X0 = y) for y ∈ S. Although we may only be

interested in the probability ax, a first step analysis will establish equations involving all

probabilities ay, y ∈ S. Note that a0 = 1 and az = 0 for all z ∈ R and z 6= 0. We have

ax =
∑
y∈S

P(XT = 0, X1 = y |X0 = x)

=
∑
y∈S

P(X1 = y |X0 = x)P(XT = 0 |X0 = x, X1 = y) .

(2.23)

By the Markov property,

P(XT = 0 |X0 = x, X1 = y) = P(YT̃ = 0 |Y0 = y) = P(XT = 0 |X0 = y) = ay .

Thus the second sum in (2.23) becomes
∑

y∈S Pxyay, and we get the system of equations

ax =
∑
y∈S

Pxyay for x ∈ S . (2.24)

Solving this system of linear equations in the variables ay will simultaneously compute all

absorption probabilities P(XT = 0 |X0 = y) (for any starting state y).

Note: System (2.24) always has a unique solution if the number of transient states is

finite. This will be evident from the discussion in Section 2.3.2. However, for an infinite

number of transient states, (2.24) results in an infinite system of equations which may

have multiple solutions. Section 2.3.3 below addresses this situation.

Example 2.3.1. Recall Example 2.1.1. Here we take p = 2
3
. Figure 2.5 shows the

transition graph. States 1, 2, and 3 lead into the absorbing boundary (consisting of the

absorbing states 0 and 4) and are therefore transient states. As above, T denotes the time

until absorption. We are interested in the probabilities

ai = P(XT = 0 |X0 = i) for i = 1, 2, 3 .

Note that here a0 = 1 and a4 = 0. Equations (2.24) read

a1 = 2
3
a2 + 1

3

a2 = 2
3
a3 + 1

3
a1

a3 = 1
3
a2
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10 2 3 41

1
3

2
3

2
3

1
3

1

2
3

1
3

Figure 2.5

Solving this system yields the absorption probabilities (for absorption into state 0)

a1 =
7

15
a2 =

1

5
a3 =

1

15
.

�

2.3.2 Finite number of transient states

In this section we will simplify the computations of absorption probabilities and expected

hitting times with the use of linear algebra. Let P be the transition matrix of an absorbing

Markov chain and assume that |T | <∞. Recall the canonical forms (2.4) and (2.5). By

(2.2), given that the chain starts in state x, the expected number of visits to state y 6= x

is
∞∑
k=1

P k
xy. (If x = y, then the sum gives the expected number of returns to state x.) The

matrix G, defined by

G =
∞∑
k=0

Pk ,

is called the potential matrix for P. Its (x, y)-entry is the expected number of visits

to state y, given that the chain starts in state x. Note that if x or y is recurrent, then

the (x, y)-entry in G can only be either 0 or ∞. If both x and y are transient, then the

(x, y)-entry is finite and nonnegative. This is the most interesting case. The matrix G

has the form

G =


G1

G2 0
. . .

Gk

· · · T(∞) · · · · · · V

 (2.25)

where for all 1 ≤ i ≤ k, the submatrix Gi =
∑∞

k=0 Pk
i is an |Ri|× |Ri|-matrix all of whose

entries are ∞, and the entries in the submatrix T(∞) =
∑∞

k=1 Tk are either 0 or ∞. Note

that while throughout this section we assume |T | <∞, it is still possible that the Markov
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chain has infinitely many irreducible closed classes Ri of recurrent states, or that at least

one of the Ri is countably infinite. However, to simplify things, we will assume that this

is not the case here. By Proposition 2.1.3(b), the entries in the finite square submatrix

V in (2.25) are finite and nonnegative.

Definition 2.3.2. The matrix V =
∞∑
k=0

Qk in (2.25) is called the fundamental

matrix of the Markov chain.

Let n = |T | and let I denote the n × n identity matrix. Observe that for all m ≥ 0, we

have

(I−Q)

(
m∑
k=0

Qk

)
=

(
m∑
k=0

Qk

)
(I−Q) = I−Qm+1 . (2.26)

Since (left or right) matrix multiplication by a constant matrix (here (I −Q)) is a con-

tinuous operation, and since lim
m→∞

Qm = 0, taking the limit in (2.26) as m→∞ yields

(I−Q)V = V(I−Q) = I .

As a result, we have

V = (I−Q)−1 .

Note that for any x, y ∈ T , the entry vx,y in the fundamental matrix V is the expected

number of visits to state y before absorption into one of the irreducible closed classes of

recurrent states, given that the Markov chain starts in state x. We summarize this result

in the following proposition.

Proposition 2.3.1 (Expected time until absorption). Let (Xn)n≥0 be a reducible

Markov chain with transition matrix P and let T be the set of transient states.

Assume |T | < ∞. Consider the submatrix Q of P indexed by the elements in T .

Assume the Markov chain starts in a transient state x ∈ T , and denote the time

until absorption into one of the irreducible closed classes of recurrent states by T abs.

Then

Ex(T abs) =
∑
y∈T

vx,y

where the vx,y are the matrix-entries in the fundamental matrix V = (I−Q)−1.
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Example 2.3.2. We return to Example 2.1.4. The Markov chain has state space S =

{1, 2, ..., 6} and its transition matrix (in canonical form) is

Pcan =

3 1 4 6 2 5



3 1 0 0 0 0 0

1 0 0 0.1 0.9 0 0

4 0 0.5 0.1 0.4 0 0

6 0 1 0 0 0 0

2 0.2 0.1 0 0 0.3 0.4

5 0.3 0 0.1 0 0.6 0

. (2.27)

Recall its transition graph from Figure 1.3.2. Here Q =

(
0.3 0.4

0.6 0

)
, from which we

compute V = (I −Q)−1 =

(
2.17 0.87

1.3 1.52

)
. Note that both transient states 2 and 5 lead

into R1 as well as into R2. Therefore the potential matrix is

G =

3 1 4 6 2 5



3 ∞ 0 0 0 0 0

1 0 ∞ ∞ ∞ 0 0

4 0 ∞ ∞ ∞ 0 0

6 0 ∞ ∞ ∞ 0 0

2 ∞ ∞ ∞ ∞ 2.17 0.87

5 ∞ ∞ ∞ ∞ 1.3 1.52

.

If the Markov chain starts in state 2, then the expected time until absorption (entry into

either R1 or R2) is 2.17 + 0.87 = 3.04. If the Markov chain starts in state 5, then the

expected time until absorption is 1.3 + 1.52 = 2.82. �

While Proposition 2.3.1 gives the expected time until absorption, we can say more about

the distribution of T abs. Again, consider the matrix Q which is indexed by the transient

states T . Its matrix entries are Qx,y = Pxy for x, y ∈ T , the entries of Qn are

(Qn)x,y = Px(X1 ∈ T , X2 ∈ T , ..., Xn−1 ∈ T , Xn = y) for x, y ∈ T .

This yields

Px(Xn ∈ T ) = Px(T abs > n) =
∑
y∈T

(Qn)x,y for all x, y ∈ T . (2.28)



2.3. ABSORBING CHAINS 78

Let us use the notation ax(n) = Px(T abs > n). For the column vectors a(n) = (ax1(n), ax2(n), ...)t

and 1 = (1, 1, ...)t (both indexed by the elements in T ), we can write (2.28) more com-

pactly as

a(n) = Qn 1 . (2.29)

Note that Px(T abs = n) = (a(n − 1) − a(n))x and that both (2.28) and (2.29) hold,

regardless of |T | being finite or infinite. We can summarize this result in the following

proposition.

Proposition 2.3.2 (Distribution of T abs). Let (Xn)n≥0 be a reducible Markov chain

with transition matrix P. We assume that the chain has transient states as well

as recurrent states. Let T be the (not necessarily finite) set of transient states and

denote the restriction of P to T by Q. Then for any x ∈ T , the distribution of

the time T abs until absorption into one of the irreducible closed classes of recurrent

states, given that the chain starts in state x, is given by

Px(T abs > n) = (Qn 1)x

and hence

Px(T abs = n) = ((Qn−1 −Qn) 1)x .

Next we address the question of how to compute the absorption probabilities

ax,Ri = P(TRi <∞|X0 = x) for x ∈ T , and 1 ≤ i ≤ k ,

that is, the probability that, if the Markov chain starts in transient state x, it will even-

tually end up in (be absorbed into) the irreducible closed class Ri. Notice that for the

computation of the absorption probabilities ax,Ri it suffices to only consider the case where

all sets Ri are singletons: If Ri contains more than one state, we can group its states to-

gether by defining a new state î (replacing the elements of Ri) which is then an absorbing

state for the modified Markov chain and for which the new transition probabilities are

P̂xî = P(X1 ∈ Ri |X0 = x) =
∑
y∈Ri

Pxy

for all x ∈ T . We then have

âx,̂i = P(T î <∞| X̂0 = x) = ax,Ri .
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For this reason, we may assume that the Markov chain (Xn)n≥0 has k absorbing states

{1, 2, ..., k} and no other irreducible closed classes of recurrent states. The canonical form

of its transition matrix is

P =

1 · · · k T


1 1
...

. . . 0

k 1

T · · · T · · · Q

(2.30)

for which we write, in short, P =

(
I 0

T Q

)
. Since for x ∈ T and any absorbing state

j ∈ {1, 2, ..., k},
ax,j = lim

n→∞
P n
xj ,

we need to understand lim
n→∞

Pn. First, observe that

P2 =

(
I 0

T2 Q2

)
=

(
I 0

(T + QT) Q2

)
.

By induction on n, we get

Pn =

(
I 0

Tn Qn

)
=

(
I 0

(I + Q + · · ·+ Qn−1)T Qn

)
.

Hence

lim
n→∞

Pn = lim
n→∞

(
I 0

(I + Q + · · ·+ Qn−1)T Qn

)
=

(
I 0

VT 0

)
=

(
I 0

(I−Q)−1T 0

)
.

We summarize this result in the following proposition.

Proposition 2.3.3 (Absorption probabilities). Let (Xn)n≥0 be a Markov chain on

finite state space S. Assume that the chain has k absorbing states {1, 2, ..., k}, no

other recurrent states, and a non-empty set of transient states T . Then for every

x ∈ T , the probability ax,j that the chain starting in x will eventually be absorbed

in state j for j ∈ {1, 2, ..., k} is the (x, j)-entry of the matrix

A = (I−Q)−1T .
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Example 2.3.3. We continue Example 2.3.2. Instead of working with the transition

matrix (2.27), we will work with the modified transition matrix

P̂ =

3 r 2 5


3 1 0 0 0

r 0 1 0 0

2 0.2 0.1 0.3 0.4

5 0.3 0.1 0.6 0

. (2.31)

where states 1, 4, 6 from the original state space S have been combined to a new state

which we have called r. In (2.31) we have T =

(
0.2 0.1

0.3 0.1

)
and Q =

(
0.3 0.4

0.6 0

)
, and so

we compute

A = (I−Q)−1T =

3 r( )
2 0.7 0.3

5 0.72 0.28
(the matrix entries have been rounded) .

From the matrix A we read off that, for example, a5,R2 = P5(TR2 < TR1) = 0.28. This

is the probability that the Markov chain, given that it starts in state 5, eventually enters

the closed subset of states R2 = {1, 4, 6}. �

2.3.3 Infinite number of transient states

Let (Xn)n≥0 be a reducible Markov chain with at least one recurrent state and an infinite

number of transient states T . With |T | = ∞, it is possible that, if the Markov chain

starts in a transient state x, it will never leave the set T , and so, possibly,

Px(T abs =∞) = lim
n→∞

Px(T abs > n) > 0 .

Recall (2.28) and (2.29). Using the notation ax(n) = Px(T abs > n),

Px(T abs =∞) = lim
n→∞

ax(n) .

For all n ≥ 0, let a(n) be the row vector whose components are the ax(n), x ∈ T , with

respect to some fixed ordering of the elements in T . Let a = limn→∞ a(n) (component

wise). From

a(n)t = Qn 1t

(recall that the superscript t denotes the transpose) we get

a(n+ 1)t = Q a(n)t , (2.32)
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and, by taking the limit as n→∞ in (2.32),

at = lim
n→∞

[Q a(n)t] = Qat (2.33)

where the rightmost equation is justified by the Dominated Convergence theorem.

Proposition 2.3.4 (Escape probability / probability of no absorption). Let

(Xn)n≥0 be a reducible Markov chain with an infinite number of transient states

T and at least one recurrent state. Let Q be the restriction of the transition matrix

P to T . For x ∈ T , let ex = Px(T abs = ∞) and let et be the column vector whose

components are the ex. Then et is the maximal solution to

at = Qat with 0 ≤ a ≤ 1 (component wise) .

Proof. The entries of e are probabilities, so it is clear that 0 ≤ e ≤ 1 must hold. The fact

that e is a solution to at = Qat was shown in (2.33). Note that a = 0 is always a solution

(in fact the unique solution if |T | <∞), but for the case |T | =∞ there may be multiple

solutions. We need to show the maximality property of e. Let ã be another solution, so

ã is a vector indexed by T and ãt = Qãt and 0 ≤ ã ≤ 1. By induction on n we have

ãt = Qn ãt for n ≥ 0 .

But then

ãt = Qn ãt ≤ Qn 1t = e(n)t for n ≥ 0 , (2.34)

from which, after taking the limit as n→∞, we get

ã ≤ e .

Example 2.3.4 (Simple random walk on N0 with absorbing boundary at 0). Consider

the Markov chain on N0 whose transition graph is shown in Figure 2.6.

In order to avoid trivial cases, we assume 0 < p < 1, and we write q = 1 − p. The

transition matrix P (which is in canonical form) is

P =


1 0

q 0 p

q 0 p

q 0 p
. . . . . . . . .

 , and Q =


0 p

q 0 p

q 0 p
. . . . . . . . .

 .
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Figure 2.6

Note that 0 is the only recurrent state, and all other states x ≥ 1 lead into 0. We need

to solve a = Qa which results in the system of equations

a1 = pa2

a2 = qa1 + pa3

a3 = qa2 + pa4

...

(2.35)

This system is easiest solved by using the substitution un = an−1 − an for n ≥ 2, and

u1 = −a1. Thus the system (2.35) reads

pun+1 = qun−1 for n ≥ 2 .

Setting u1 = c (any constant), we get u2 = c
q

p
and, by induction on n,

un = c (
q

p
)n−1 for n ≥ 2 .

Note that an = −(u1 + · · ·+ un), so the general solution to (2.35) is

an = (−c)
n−1∑
k=0

(
q

p
)k for n ≥ 1 . (2.36)

In order to find the maximal solution for which 0 ≤ an ≤ 1 for all n ≥ 1, we need to

distinguish cases.

Case p > q : Since for this case, the chain is biased towards stepping away from 0, we

suspect that there is positive probability of remaining in the set N of transient states

forever. Indeed, for this case the maximum solution a under the constraint 0 ≤ a ≤ 1 is

achieved for the constant

−c =

(
∞∑
k=0

(
q

p
)k

)−1

= 1− q

p
,

which results in the solution

an = Pn(T 0 =∞) = 1− (
q

p
)n > 0 for n ≥ 1 . (2.37)
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Case q ≥ p : The maximum solution a for (2.36) under the constraint 0 ≤ a ≤ 1 is

achieved for the constant c = 0. Thus

an = 0 for n ≥ 1 , (2.38)

or equivalently stated, eventual absorption of the Markov chain in 0 is certain for any

starting state n. �

Example 2.3.5 (Simple random walk on N0 with reflecting boundary at 0). We slightly

modify the Markov chain from Example 2.3.4 by replacing P01 = 0 with P01 = 1 (but

make no other changes). The resulting chain is irreducible. Its transition graph is shown

in Figure 2.7.

10 2 3

1

1− p

p p

1− p 1− p

p

1− p

Figure 2.7

Let q = 1− p.
Case p > q : For this case, (2.37) proves that the chain is transient. Indeed, we have

P0(T 0 <∞) = P1(T 0 <∞) = q
p
< 1.

Case q ≥ p : For this case, (2.38) proves that the chain is recurrent since here we have

P0(T 0 <∞) = P1(T 0 <∞) = 1− 0 = 1. �

We now turn to the computation of the absorption probabilities

ax,Ri = Px(T abs <∞ , XTabs ∈ Ri)

where x is a transient state and Ri is an irreducible closed class of recurrent states. As

discussed in the previous subsection, for the computation of ax,Ri it suffices to assume that

each irreducible closed class Rk is a singleton set (if not, we work with an appropriately

modified chain). Thus, by some abuse of notation, we will identify Ri with the single

state that represents the class Ri. Our goal is to compute the matrix A whose entries are

the probabilities ax,Ri for x ∈ T and Ri ∈ {R1, R2, ...}.
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Lemma 2.3.5. Let (Xn)n≥0 be an absorbing Markov chain, let {R1, R2, ...} be the

set of absorbing states and T the set of transient states. Then the absorption prob-

abilities ax,Ri = Px(T abs < ∞ , XTabs = Ri) for x ∈ T are the matrix entries of the

matrix

A =
∞∑
n=0

Qn T .

Proof. Recall the format of the transition matrix P in canonical form (2.30). We have

ax,Ri = Px(T abs <∞ , XTabs = Ri)

=
∞∑
n=1

Px(T abs = n ,Xn = Ri)

=
∞∑
n=1

Px(X1 ∈ T , ..., Xn−1 ∈ T , Xn = Ri)

=
∞∑
n=1

∑
y∈T

Px(X1 ∈ T , ..., Xn−1 = y, Xn = Ri)

=
∞∑
n=1

∑
y∈T

Q(n−1)
xy PyRi

=

(
∞∑
n=0

Qn T

)
x,Ri

.

Note that it may be difficult to compute A =
∑∞

n=0 Qn T directly. The following propo-

sition gives an alternate way of computing A via solving an infinite system of linear

equations.

Proposition 2.3.6 (Absorption probabilities). Let (Xn)n≥0 be an absorbing Markov

chain, let {R1, R2, ...} be the set of absorbing states and T be the set of transient

states. Then the absorbing probabilities ax,Ri = Px(T abs < ∞ , XTabs = Ri) for

x ∈ T are the matrix entries of the matrix A which is the minimal solution to the

matrix equation

M = QM + T (2.39)

under the constraint 0 ≤ A ≤ 1 (entry wise).
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Proof. Applying a first-step analysis to the computation of ax,Ri , we get

ax,Ri = Px(T abs <∞ , XTabs = Ri)

=
∞∑
n=1

Px(T abs = n ,Xn = Ri)

=
∞∑
n=2

∑
y∈T

Px(T abs = n ,X1 = y,Xn = Ri) + PxRi

=
∞∑
n=2

∑
y∈T

Px(X2 ∈ T , ..., Xn−1 ∈ T , X1 = y,Xn = Ri) + PxRi

=
∞∑
n=2

∑
y∈T

Px(X2 ∈ T , ..., Xn−1 ∈ T , Xn = Ri |X1 = y)Pxy + PxRi

=
∞∑
n=2

∑
y∈T

Py(X1 ∈ T , ..., Xn−2 ∈ T , Xn−1 = Ri)Pxy + PxRi

=
∞∑
n=1

∑
y∈T

Py(X1 ∈ T , ..., Xn−1 ∈ T , Xn = Ri)Pxy + PxRi

=
∞∑
n=1

∑
y∈T

Pxy ay,Ri + PxRi =
∞∑
n=1

∑
y∈T

Qxy ay,Ri + PxRi = (QA + T)x,Ri .

The above shows that the matrix of absorption probabilities A is a solution to the matrix

equation M = QM + T (which may have multiple solutions). We need to show that

the A is the minimal solution under the constraint 0 ≤ A ≤ 1. By Lemma 2.3.5,

A =
∑∞

n=0 Qn T. Assume the matrix Ã also solves M = QM + T and satisfies the

inequalities 0 ≤ Ã ≤ 1. It follows that

Ã = QÃ + T ≥ T

(all inequalities are to be understood component wise). So

Ã ≥ QT + T ,

and thus

Ã ≥ Q(QT + T) + T = (Q2 + Q + I)T .

By induction, we have

Ã ≥
n∑
k=0

QkT for all n ≥ 1 .

Taking the limit as n→∞ yields

Ã ≥
∞∑
k=0

QkT = A .
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2.4 Periodicity

Some Markov chains exhibit a kind of cyclic behavior in terms of the set of states the chain

can visit at certain times. Consider, for example, simple random walk on the integers Z.

If the random walk starts in state 0, say, then at even times, the state of the chain will

always be an even integer. And at odd times, the state of the chain will always be an

odd integer. This is typical behavior of a so-called periodic chain: Certain collections of

states are periodically “forbidden”. In this section we define the notion of periodicity of a

Markov chain and discuss certain dynamical properties that arise if the chain is periodic.

Definition 2.4.1. Let (Xn)n≥0 be a Markov chain with state space S. Let x ∈ S
with the property that P n

xx > 0 for some n ≥ 1. Define

c(x) := gcd{n ≥ 1 : P n
xx > 0}

where gcd stands for greatest common divisor.

(a) If c(x) ≥ 2, then state x ∈ S is called periodic with period c(x).

(b) If c(x) = 1, then state x is called aperiodic.

(c) If all states in S have the same period c, we call the Markov chain periodic

with period c.

(d) If all states in S are aperiodic, we call the Markov chain aperiodic.

Note that 1 ≤ c(x) ≤ min{n : P n
xx > 0}. If Pxx > 0, then x is aperiodic.

Example 2.4.1. Consider simple random walk on Z with Px,x+1 = p and Px,x−1 = 1− p
for 0 < p < 1 and x ∈ Z. This Markov chain is periodic with period 2. If we modify

the random walk by adding positive holding probability to each state, that is, if we use

Px,x+1 = p, Pxx = r, and Px,x−1 = q for positive p, r, q with p+ r+ q = 1 and for all x ∈ Z,

the Markov chain is aperiodic. �

Note: Often times, in order to avoid periodicity issues, we will work with a so-called

lazy version of a given periodic Markov chain: If a periodic Markov chain has transition

matrix P, we will instead work with a lazy version P̃ = pI + (1− p)P for some 0 < p < 1.

Adding positive holding probability p to each state guarantees that the modified chain

with transition matrix P̃ is aperiodic.

Example 2.4.2. Figure 2.8 shows the transition graph for an 8-state Markov chain. A

directed edge indicates a positive one-step transition probability in the given direction.
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Figure 2.8

States 7, 8 have period 2, states 4, 5, 6 have period 3, and states 1, 2, 3 are aperiodic.

Note that this Markov chain is not irreducible. �

Proposition 2.4.1 (Periodicity is a class property). Let x, y ∈ S and assume x

communicates with y. Then c(x) = c(y).

Proof. Since x −→ y, there exists n ≥ 1 such that P n
xy > 0. Similarly, since y −→ x,

there exists m ≥ 1 such that Pm
yx > 0. Thus

P n+m
xx ≥ P n

xyP
m
yx > 0 ,

so c(x) divides (n+m). Furthermore, for any k ≥ 1 with P k
yy > 0, we have

P n+k+m
xx ≥ P n

xyP
k
yyP

m
yx > 0 ,

and so c(x) divides (n + k + m). It follows that c(x) divides k, and so c(x) ≤ c(y). But

the roles of x and y can be interchanged in this argument, so we also have c(y) ≤ c(x).

Hence c(x) = c(y).

Corollary 2.4.2. An irreducible Markov chain is either aperiodic or periodic with

period c > 1.

Example 2.4.3 (Simple random walk on a connected graph is either aperiodic

or has period 2). Let G(V,E) be a connected graph and consider simple random walk

on G. We will show that simple random walk on a graph cannot be periodic with period

c > 2. Recall Definition A.2.1 for the definition of a bipartite graphs. Figure 2.9 shows

some examples. Proposition A.2.1 in Appendix A states that a connected graph G(V,E)
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bipartite bipartite non-bipartite

Figure 2.9

is bipartite if and only if it does not contain an odd-length cycle. First, assume the graph

G(V,E) is bipartite, and V = V1 ∪ V2. Choose a vertex v ∈ V . Let us assume v ∈ V2.

Since G has no self-loops, Pvv = 0, and since G has no isolated points (by connectedness,

at least one edge must emanate from each vertex v), P 2
vv > 0. Assume P n

vv > 0 for

some n > 2. Then there exists a sequence v, v1, v2, ..., vn−1, v of (not necessarily distinct)

vertices such that Pvv1Pv1v2 · · ·Pvn−1v > 0. Since the graph is bipartite, we must have

v1, v3, ..., vn−1 ∈ V1 and v2, v4, ..., vn−2 ∈ V2. Hence the number (n − 2) is even, and

therefore n is also even. It follows that vertex v has period 2, and thus simple random

walk on any bipartite graph has period 2.

We now assume G(V,E) is not bipartite. By Proposition A.2.1, the graph contains an odd-

length cycle, say a cycle of length m. Let v be a vertex in this cycle. Then clearly Pm
vv > 0.

On the other hand, for any vertex v ∈ V we also have P 2
vv > 0. Since gcd{2,m} = 1,

vertex v is aperiodic. Since the graph is connected, by Proposition 2.4.1, all vertices are

aperiodic, and so simple random walk on a non-bipartite graph is aperiodic.

This proves that simple random walk on a connected graph is either aperiodic or has

period 2 (in the latter case the graph is bipartite). �

Aside: Bipartite graphs are exactly the 2-colorable graphs, that is, the graphs for which

each vertex can be colored in one of two colors such that no adjacent vertices have the

same color. (An n-coloring of a graph is defined analogously.) The chromatic number

χ(G) of a graph G is the smallest number n for which there exists an n-coloring of the

graph. Bipartite graphs are exactly the graphs G with χ(G) = 2. �
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Proposition 2.4.3. Let (Xn)n≥0 be a Markov chain with state space S.

(a) A state x ∈ S is aperiodic if and only if there exists M(x) ∈ N such that for

all n ≥M(x), we have P n
xx > 0.

(b) If (Xn)n≥0 is irreducible and aperiodic, and if S is finite, then there exists

N ∈ N such that for all n ≥ N and all x, y ∈ S, P n
xy > 0.

Proof. We need the following lemma which is an immediate corollary of Theorem A.3.1

(Schur’s theorem). For a proof see Appendix A.

Lemma 2.4.4. If J is a subset of the natural numbers N that is closed under

addition, and if the greatest common divisor of the elements in J is c, then there

exists N ∈ N such that nc ∈ J for all n ≥ N .

(a) Note that for any state x ∈ S, the set Jx = {n : P n
xx > 0} is closed under addition. In

particular, since x is aperiodic, Lemma 2.4.4 states that there exists a number M(x) such

that P n
xx > 0 for all n ≥ M(x). Conversely, if for state x there exists a natural number

M(x) such that P n
xx > 0 for all n ≥ M(x), then P q

xx > 0 and P r
xx > 0 for two distinct

prime numbers q and r. Hence c(x) = 1 and so x is aperiodic.

(b) Since the chain is irreducible, for each pair of states x, y there exists a number m(x, y)

such that P
m(x,y)
xy > 0 Therefore, for all n ≥ M(x) +m(x, y), we have P n

xy > 0. Since the

state space S is finite, we can take the maximum

N := max{M(x) +m(x, y) |x, y ∈ S} .

It follows that PN
xy > 0 for all x, y ∈ S, and therefore also P n

xy > 0 for all x, y ∈ S and

n ≥ N .

Definition 2.4.2. (a) A matrix P is called positive, if all of its entries are strictly

positive. (b) A square matrix P is called regular, if there exists an N ∈ N such

that PN is a positive matrix.

It follows that a stochastic matrix P is regular if and only if there exists an N ∈ N such

that Pn is positive for all n ≥ N .

Corollary 2.4.5. A finite transition matrix P is regular if and only if the corre-

sponding Markov chain is irreducible and aperiodic.



2.4. PERIODICITY 90

We now take a closer look at the cyclic structure of an irreducible, periodic Markov

chain.

Theorem 2.4.6 (Cyclic classes). Let (Xn)n≥0 be an irreducible, periodic Markov

chain with state space S, transition matrix P, and period c ≥ 2. Then

(a) for all x, y ∈ S there exists an integer r with 0 ≤ r ≤ c− 1 such that

P n
xy > 0 ⇒ n ≡ r mod c ,

and furthermore, there exists an integer N such that P kc+r
xy > 0 for all k ≥ N .

(b) There exists a partition

S = S0 ∪ S1 ∪ ... ∪ Sc−1

into c so-called cyclic classes Sr such that for all 0 ≤ r ≤ c− 1,

x ∈ Sr ⇒
∑

y∈Sr+1

Pxy = 1 (with Sc = S0) .

Proof. (a) Let x, y ∈ S and consider n0 = min{n |P n
xy > 0}. Then n0 = k0c + r for some

0 ≤ r ≤ c− 1 and some k0 ≥ 0.

For all m with Pm
yx > 0, we have P n0+m

xx ≥ P n0
xy P

m
yx > 0, and so (n0 + m) is a multiple of

c. Furthermore, for any n with P n
xy > 0, the sum (n+m) is also multiple of c. Hence

(n+m)− (n0 +m) = n− n0 = kc for some k ≥ 0 ,

and

n ≡ n0 ≡ r mod c for all n with P n
xy > 0 .

By Lemma 2.4.4, there exists N ′ ∈ N such that P cn
yy > 0 for all n ≥ N ′. Thus

P n0+cn
xy ≥ P n0P nc

yy > 0 for n ≥ N ′ .

Setting k = k0 + n and N = k0 +N ′, we get P kc+r
xy > 0 for all k ≥ N .

(b) Let x ∈ S. For 0 ≤ r ≤ c− 1, define the sets Sr, called the cyclic classes, by

Sr = {z ∈ S : ∃n ≥ 0 s.t. P n
xz > 0 and n ≡ r mod c} . (2.40)

The sets Sr are non-empty by construction. By part (a), the sets Sr are disjoint, and by

irreducibility, their union is the entire state space S. Let y ∈ Sr for some 0 ≤ r ≤ c− 1.
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Then, by (2.40),

S ′s = {z ∈ S : ∃n s.t. P n
yz > 0 and n ≡ s mod c}

= {z ∈ S : ∃m s.t. Pm
xz > 0 and m ≡ (r + s) mod c} = Sr+s .

(If (r+ s) ≥ c and (r+ s) ≡ p mod c, then we set Sr+s = Sp.) Thus the cyclic classes Sr

do not depend on the state x that was used for their construction in (2.40). The above

also shows that all 0 ≤ r ≤ c− 1,

x ∈ Sr ⇒
∑

y∈Sr+1

Pxy = 1 .

Example 2.4.4. Figure 2.10 shows the transition graph of an irreducible Markov chain

on eight states. The chain is periodic with period 3. The cyclic classes are S0 = {4, 7},
S1 = {1, 3, 8}, and S2 = {2, 5, 6}. �

5

4

1

2

3

6

7

8

{4, 7}S0 = {2, 5, 6} = S2

{1, 3, 8}S1 =

Figure 2.10

Proposition 2.4.7. Let (Xn)n≥0 be an irreducible, periodic Markov chain with state

space S and period c ≥ 2. Then the Markov chain (Yn)n≥0 defined by Yn = Xcn for

n ≥ 0 is aperiodic and reducible. Its irreducible closed classes are S0, S1, ..., Sc−1 as

introduced in Theorem 2.4.6.
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Proof. The process (Yn)n≥0 is a Markov chain and has transition matrix M = Pc (see

Exercise 1.3). Let x ∈ S. Then

d = gcd{k |Mk
xx > 0} = gcd{k |P kc

xx > 0}

which must be equal to 1, since d > 1 leads to the contradiction

c = gcd{n |P n
xx > 0} = d c > c .

Hence (Yn)n≥0 is aperiodic. By construction of Sr, for all 0 ≤ r ≤ c−1 and for all x ∈ Sr,
we have Mxy = P c

xy = 0 if y /∈ Sr. Hence the cyclic classes Sr are closed. Let y, z ∈ Sr. By

irreducibility of P, there exists an n ≥ 0 such that P n
yz > 0. Since y, z belong to the same

cyclic class, n must be a multiple of c. Hence there exists k ≥ 0 such that P kc
yz = Mk

yz > 0

which shows that Sr is irreducible for M.

Corollary 2.4.8. Let (Xn)n≥0 be an irreducible, positive recurrent, and periodic

Markov chain with state space S and period c ≥ 2. Let π be the unique stationary

distribution and consider the cyclic classes S0, S1, ..., Sc−1. Then

1

c
= π(S0) = π(S1) = · · · = π(Sc−1) .

Furthermore, the unique stationary distribution for the Markov chain (Yn)n≥0 (de-

fined, as in the previous proposition, by Yn = Xcn for n ≥ 0) when restricted to the

cyclic class Sr is

c π|Sr for 0 ≤ r ≤ c− 1

where c π|Sr(y) = c π(y) if y ∈ Sr, and zero otherwise.

Proof. (a) Consider the indicator function f = 1Sr . We have f(Xk) = 1{Xk∈Sr} and

Eπ(f) = π(Sk). By Theorem 3.1.1,

lim
m→∞

1

m

m−1∑
k=0

1{Xk∈Sr} = π(Sk) with probability 1 . (2.41)

Because of periodicity, for any sample path ω, we have 1{Xk∈Sr}(ω) = 1 exactly once every

c steps and zero otherwise. This makes the limit on the left-hand side in (2.41) equal to
1

c
for each 0 ≤ r ≤ c− 1.

(b) By Proposition 2.4.7, the Markov chain (Yn)n≥0, when restricted to Sr, is irreducible

and aperiodic. Let y ∈ Sr and denote by T y(c) the first return time to state y for the chain
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(Yn)n≥0, and by T y the first return time to state y for the chain (Xn)n≥0. Clearly, because

of periodicity, we have the equality of the events {T y(c) = k} = {T y = c k} for k ≥ 0. It

follows that the mean return time for state y for the chain (Yn)n≥0 is
1

c π(y)
, and therefore

the unique stationary distribution πSr of (Yn)n≥0 restricted to Sr is given by

πSr(y) = c π(y) for y ∈ Sr .

Remark 2.4.9. Periodicity of a finite-state Markov chain is closely related to the

number of eigenvalues of modulus 1 of its transition matrix P. If the Markov chain

has period c ≥ 2, then the cth roots of unity 1, e2πi/c, ..., e2πi(c−1)/c are simple eigen-

values of P, an P has no other eigenvalues of modulus 1. See Theorem A.6.2(e).

Exercises

Exercise 2.1. Consider a Markov chain (Xn)n≥0 with state space S = N0 and transition

probabilities

Pxy =


1/2 if x = y

1/2 if x > 0 and y = x− 1

(1/2)(y+1) if x = 0 and y > 0

0 otherwise

.

Is this a recurrent Markov chain or a transient Markov chain?

Exercise 2.2. Let (Xn)n≥0 be a Markov chain on state space S. Let x, y ∈ S, and recall

the notation fxy = P(T y < ∞|X0 = x). Consider the random variable V y which gives

the long-run number of visits (not including the initial visit, in case X0 = y) to state y.

Prove that for k ≥ 1,

P(V y ≥ k |X0 = x) = fxyf
k−1
yy .

Exercise 2.3. Consider a Markov chain (Xn)n≥0 with state space S = N0 and transition

probabilities

Pxy =

{
3/5 if y = 0

1/5 if y ∈ {x+ 3, x+ 6}

for x ∈ N0. Classify each state of this Markov chain as positive recurrent, null recurrent,

or transient, and find all irreducible closed classes of S (if any).
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Exercise 2.4. Consider the Markov chain with state space S = N0 and transition prob-

abilities

Px0 =
3

x+ 3
Px,x+1 =

x

x+ 3
for x ≥ 0 .

Show that the chain is irreducible and determine whether it is positive recurrent, null

recurrent, or transient. Does it have a stationary distribution?

Exercise 2.5. Let Y1, Y2, ... be an infinite sequence of i.i.d. Bernoulli random variables

with P(Yi = 1) = p and P(Yi = 0) = 1 − p. Consider the Markov chain (Xn)n≥0 that

tracks the number of consecutive 1s in the last run. More precisely, let X0 = 0, and for

n > 0 and 1 ≤ k ≤ n, let Xn = k if Yn−k = 0 and Yi = 1 for (n− k) < i ≤ n. Show that

(Xn)n≥0 is irreducible and positive recurrent and compute its stationary distribution π.

Exercise 2.6. Consider the Markov chain (Xn)n≥0 from Exercise 2.5. It tracks the

number of consecutive 1s in the last run of a sequence of i.i.d. Bernoulli random variables

for which 1 occurs with probability p. Let k ≥ 1. Compute a formula for E0(T k), the

expected time until we see a sequence of k 1s in a row for the first time.

Exercise 2.7. Consider an infinite sequence (Yn)n≥1 of i.i.d. coin flips of a fair coin, so

we have P(Yi = T ) = P(Yi = H) = 1/2. Let τ be the time until we see the pattern TT

appear for the first time.

(a) Compute E(τ).

(b) Recall the Fibonacci sequence 1, 1, 2, 3, 5, 8, 13, .... It is described by the recurrence

fn = fn−1 + fn−2

for n ≥ 3, with f1 = f2 = 1. Prove that for n ≥ 2,

P(τ = n) =
fn−1

2n
.

(Hint: For n ≥ 4, any sequence of coin flips that is an element of the event {τ = n}
must start with either H or TH.)

(c) Use your result from part (b) to prove the following identity for Fibonacci numbers:

∞∑
n=1

fn
2n

= 2.

Exercise 2.8. Prove that every finite-state Markov chain has at least one recurrent state.
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Exercise 2.9. Consider a Markov chain (Xn)n≥0 on state space S = {0, 1, 2, 3, 4, 5} with

transition matrix

P =

0 1 2 3 4 5



0 3/4 1/4 0 0 0 0

1 1/4 3/4 0 0 0 0

2 0 0 1/2 0 1/2 0

3 0 1/3 0 0 1/3 1/3

4 0 0 1/2 0 1/2 0

5 0 1/3 0 1/3 1/3 0

.

Describe all stationary distributions for this Markov chain.

Exercise 2.10. Consider the Markov chain (Xn)n≥0 on state space S = {0, 1, ..., 6} with

transition matrix

P =

0 1 2 3 4 5 6



0 1/4 3/4 0 0 0 0 0

1 1/2 1/2 0 0 0 0 0

2 0 0 2/7 0 3/7 0 2/7

3 0 1/5 0 1/5 2/5 0 1/5

4 0 0 5/7 0 2/7 0 0

5 0 0 0 3/8 1/4 1/8 1/4

6 0 0 0 0 6/7 0 1/7

.

(a) Classify each state as transient or recurrent and find all irreducible closed classes.

(b) Compute lim
n→∞

P n
3,0.

(c) Assume X0 = 3. Compute the expected number of visits to state 3.

Exercise 2.11. Consider simple random walk on the vertices of the infinite tree shown

in Figure 2.11. The walk starts at the root of the tree labeled 0. At each step, the walk

chooses its next location uniformly at random from its neighboring vertices.

(a) Is this Markov chain recurrent, or transient, or neither?

(b) Now assume that the walk starts at vertex x (marked in the picture). What is the

probability that the walk will never visit vertex 0?
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0

x

Figure 2.11: The graph continues to infinity in the same manner.

Exercise 2.12. Let (Xn)n≥0 and (Yn)n≥0 be independent Markov chains with state space

S = {1, 2}, each with transition matrix

P =

1 2( )
1 1/3 2/3

2 1/2 1/2
.

Assume X0 = 1 and Y0 = 2. Consider T = min{n : Xn = Yn} , i.e., the first time both

chains are in the same state.

(a) Compute E(T ). (b) Compute P(XT = 2).

Exercise 2.13. Let (Xn)n≥0 be a finite-state Markov chain that has at least two transient

states. Consider its fundamental matrix V. Recall that the rows and columns of V are

labeled by the transient states T of (Xn)n≥0. We denote the matrix entries of V by vxy

for x, y ∈ T . Also recall the notation fxy = Px(T y <∞).

(a) Show that for any transient state x ∈ T ,

fxx =
vxx − 1

vxx
.

(b) Let x and y be distinct transient states. Derive an analogous formula for fxy in

terms of the matrix entries of V.

Exercise 2.14. Consider the following Markov chains. For each chain, determine the

periodicity of its states.

(a) S = {0, 1, 2}, and the transition matrix is

P =

0 1 2 0 0 0 1

1 1 0 0

2 1/2 1/2 0

.
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(b) S = {0, 1, 2, 3, 4}, and the transition matrix is

P =

0 1 2 3 4


0 0 1/3 2/3 0 0

1 0 0 0 3/4 1/4

2 0 0 0 1/2 1/2

3 1 0 0 0 0

4 1 0 0 0 0

.

Exercise 2.15. Consider simple random walk on a finite graph G(V,E) (see page 27).

(a) Verify that π on V defined by

π(v) =
deg(v)

2|E|
for v ∈ V

is a stationary distribution.

(b) Consider simple random walk on a k-dimensional hypercube Zk2 (see Example 1.5.6).

Choose any vertex x ∈ Zk2 and assume the random walk starts in x. What is the

expected number of steps until the walk returns to x for the first time?

Exercise 2.16. Consider a standard 8× 8 chessboard as shown in Figure 2.12 below.

Figure 2.12: Standard chessboard

A king can move one square at a time in any direction (horizontally, vertically, or diag-

onally) that is available from his current location. Assume the king chooses each move

uniformly at random from all permissible moves and that he starts out in the bottom left

corner of the board.

(a) How many times, on average, will he spend on a border or corner square (i.e. a

square located along the perimeter of the board) before he returns to the bottom

left corner for the first time?

(b) Suppose the king, before each attempt, flips a coin and moves only if the coin shows

heads, otherwise waits for that time period in his current spot. The probability that
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the coin lands heads is P(H) = p for some fixed p with 0 < p < 1. All coin flips are

independent. Find the expected duration for the same journey (bottom left corner

to bottom left corner).

Exercise 2.17. Recall that a birth/death chain is a Markov chain whose state space S
is either {0, 1, ..., N} or N0 and whose transition probabilities are

Pxy =


qx if y = x− 1

px if y = x+ 1

rx if y = x

with px + qx + rx = 1 for all x ∈ S. Consider an irreducible birth/death chain (Xn)n≥0

and a measure ν on S defined by ν0 = 1 and

νk =
p0p1 · · · pk−1

q1q2 · · · qk

for k ∈ S with k ≥ 1. Show that ν defines an invariant measure for (Xn)n≥0 and that

(Xn)n≥0 has a stationary distribution if and only if
∑
k∈S

νk <∞.

Exercise 2.18. For each of the following irreducible birth/death chains, determine whether

or not it has a stationary distribution. Compute the stationary distribution if it exists.

(a) Simple biased random walk on N0 with reflecting boundary at 0. Assume p = 1/3

and q = 2/3.

(b) A birth/death chain on N0 with r0 = 2
3
, p0 = 1

3
and

qk =
k + 1

k + 2
, pk =

1

k + 3
, and rk = (1− pk − qk) for k ≥ 1 .

Exercise 2.19. Consider an irreducible, positive recurrent Markov chain (Xn)n≥0 with

stationary distribution π. Let x and y be two distinct states. Find a formula for the

expected number of visits to y that occur between two consecutive visits to x.

Exercise 2.20. Consider simple random walk on the graph in Figure 2.13. Assume the

walk starts in vertex a. Use a first-step analysis to find Ea(T b). (Hint: Make use of

symmetries in the graph.)

Exercise 2.21. Consider an irreducible, positive recurrent Markov chain (Xn)n≥0 with

stationary distribution π. Let x and y be two distinct states.
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a b

Figure 2.13

(a) Show that

Ex(V x
T y) = π(x)(Ex(T y) + Ey(T x))

where V x
T y is the number of visits to x between (including) times 0 and T y − 1.

(b) Show that

Px(T x < T y) =
1

π(x)(Ex(T y) + Ey(T x))
.

(Hint: Recall Example 2.2.1.)

Exercise 2.22. Consider a connected graph G(V,E) and assume there exists an edge

e = {x0, y0} with e ∈ E such that the removal of e results in two disjoint components Gx0

and Gy0 for the remaining graph where x0 ∈ Gx0 and y0 ∈ Gy0 . Denote the edge set of

Gx0 by Ex0 . Prove that for simple random walk on G(V,E) we have

Ex0(T y0) = 2|Ex0|+ 1 .

(Hint: Consider simple random walk on the subgraph G̃ that results from adding vertex

y0 and edge e to the subgraph Gx0 .)

Exercise 2.23. Consider a finite, connected graph G(V,E) and simple random walk on

the graph.

(a) Show that for all x ∈ V ,

Ex(T x) = 1 +
1

deg(x)

∑
y:{x,y}∈E

Ey(T x).

(b) Use the result from part (a) to prove that for all vertices x, y ∈ V , we have

Ex(T y) ≤ 2|E| − 1 .

Exercise 2.24. Consider a finite, connected graph G(V,E) and simple random walk on

the graph. Assume there exists a vertex y ∈ V for which deg(y) = 1. Use the result

from Exercise 2.22 to show that there exists a vertex x ∈ V for which the upper bound

in Exercise 2.23(b) is sharp. That is, show that Ex(T y) = 2|E| − 1.
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Exercise 2.25. Let (Xn)n≥0 be an irreducible, positive recurrent Markov chain on S with

stationary distribution π. Given a proper subset B ⊂ S, consider the process (Bm)m≥0

with state space B obtained by observing (Xn)n≥0 when in B. That is, with

T0 = min{n ≥ 0 : Xn ∈ B} ,

and

Tm = min{n > Tm−1 : Xn ∈ B}

for m ≥ 1, set

Bm = XTm .

Show that (Bm)m≥0 is positive recurrent and find its stationary distribution.



Chapter 3

Limit Theorems for Markov Chains

3.1 The Ergodic Theorem

Let S be a discrete state space, µ a probability distribution on S, and let f be a function

f : S → R. We will use the notation

Eµ(f) =
∑
y∈S

f(y)µ(y) .

Theorem 3.1.1 (Ergodic theorem for Markov chains). Let (Xn)n≥0 be an irre-

ducible, positive recurrent Markov chain with state space S and stationary distribu-

tion π. Assume the chain has initial distribution π0. Let f : S → R be a bounded

function. Then

lim
m→∞

1

m

m−1∑
k=0

f(Xk) = Eπ(f) with probability 1 .

Proof. We first assume that f ≥ 0 and that the chain starts in state x. (We will cover the

general case later.) For k ≥ 0, we consider the kth-return times T x,k to state x defined

by T x,0 = 0 and

T x,k = min{n :> T x,k−1 and Xn = x} for k ≥ 1 .

Note that T x,1 = T x, the first return time to state x as previously defined. Because of

the strong Markov property, the waiting times (T x,k − T x,k−1), for k ≥ 1, between two

consecutive visits to state x are i.i.d. random variables with the same distribution as T x.

Furthermore, the random variables XTx,k−1 , XTx,k−1+1, ..., XTx,k−1 for the times in between

101
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two consecutive visits to x form mutually independent “clusters” of random variables for

distinct k ≥ 1. As a consequence, the random variables Zk, k ≥ 1, defined by

Zk =
Tx,k−1∑

m=Tx,k−1

f(Xm)

form an i.i.d. sequence. Since f is a bounded function, there exists M < ∞ such that

|f(y)| ≤M for all y ∈ S. Since x is positive recurrent, Ex(T x) <∞. Thus

Ex(|Z1|) ≤M Ex(T x) <∞ ,

and we can apply the Strong Law of Large numbers to the sequence Z1, Z2, ... which yields

lim
n→∞

1

n

n∑
k=1

Zk = Ex(Z1) with probability 1 .

Setting STx,n =
Tx,n−1∑
m=0

f(Xm) =
n∑
k=1

Zk, we thus have

lim
n→∞

STx,n

n
= Ex(Z1) with probability 1 . (3.1)

We now compute Ex(Z1).

Ex(Z1) = Ex

(
Tx−1∑
m=0

f(Xm)

)
= Ex

(∑
y∈S

f(y)
Tx−1∑
m=0

1{y}(Xm)

)

=
∑
y∈S

f(y)Ex

(
Tx−1∑
m=0

1{y}(Xm)

)
.

Recall from Section 2.2.1 that Ex
(∑Tx−1

m=0 1{y}(Xm)
)

= π(y)Ex(T x). So altogether we

get

Ex(Z1) =
∑
y∈S

f(y)π(y)Ex(T x) = Eπ(f)Ex(T x) , (3.2)

and together with (3.1),

lim
n→∞

STx,n

n
= Eπ(f)Ex(T x) with probability 1 . (3.3)

Applying the Strong Law of Large Numbers to the i.i.d. random variables (T x,k−T x,k−1)

and since T x,n =
∑n

k=1(T x,k − T x,k−1), we get

lim
n→∞

T x,n

n
= Ex(T x) with probability 1 . (3.4)
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Combining the results from (3.3) and (3.4) yields

lim
n→∞

STx,n

T x,n
= Eπ(f) with probability 1 . (3.5)

The limit in (3.5) is close to what we need to prove, but not exactly. Using the notation

Sm =
∑m−1

k=0 f(Xk), we really need

lim
m→∞

Sm
m

= Eπ(f) with probability 1 .

We now introduce the new random variables V x
m defined by

V x
m =

m∑
s=1

1{x}(Xs) for m ≥ 1 . (3.6)

For any m ≥ 1, V x
m is the number of returns to state x by time m. The most recent (up

to time m) return to x happens at time T x,V
x
m ≤ m. After that time, the Markov chain

will visit x again at time T x,V
x
m+1 > m. See the illustration in Figure 3.1.

x x x x x

m

T x,1 T x,2 T x,3 = T x,V
x
m T x,V

x
m+1

Here V x
m = 3

Figure 3.1

So we have

T x,V
x
m ≤ m ≤ T x,V

x
m+1 ,

and since we are (for now) assuming f ≥ 0,

STx,V xm ≤ Sm ≤ STx,V xm+1 .

This yields

Sm
m
≤ Sm
T x,V xm

≤ STx,V xm+1

T x,V xm
=
STx,V xm+1

T x,V xm+1

T x,V
x
m+1

T x,V xm
. (3.7)

Since x is recurrent, limm→∞ T
x,V xm =∞ with probability 1, and

P(T x,V
x
m+1 − T x,V xm <∞) = 1 .
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Thus

lim
m→∞

T x,V
x
m+1

T x,V xm
= 1 with probability 1 ,

and (3.7) in combination with (3.5) yields

lim
m→∞

Sm
m
≤ Eπ(f) with probability 1 .

By a similar argument, using

STx,V xm
T x,V xm

T x,V
x
m

T x,V xm+1
≤ Sm
T x,V xm+1

≤ Sm
m

,

we arrive at

Eπ(f) ≤ lim
m→∞

Sm
m

.

Altogether, we have

lim
m→∞

Sm
m

= Eπ(f) . (3.8)

Recall that we have assumed that f ≥ 0 and that the Markov chain starts in state x. As

the last step, we will now show that (3.8) holds without these restrictions. Assume f is

a bounded real-valued function. We can write

f = max(f, 0)−max(−f, 0) .

Set f+ = max(f, 0) and f− = max(−f, 0). Then f+ ≥ 0 and f− ≥ 0, and we can apply

(3.8) to f+ and f− separately, and then take the difference of the two results (which is

allowed since ∞−∞ is not involved), which yields (3.8) for any general, bounded f .

Lastly, (3.8) holds for any starting state x. Thus if the Markov chain starts with initial

distribution π0, then we can average both sides of (3.8) with respect to the distribution

π0, and so

lim
m→∞

Sm
m

= Eπ(f)

holds for any initial distribution π0 and any bounded, real-valued function f on the state

space S.

Remark 3.1.2. What are the essential components that make the proof of Theorem

3.1.1 work? Recurrence allows us to split the trajectories into “disjoint blocks”

which are of finite length with probability 1. The Strong Markov property guar-

antees that certain sequences of random variables Z1, Z2, ... where Zk is defined on

block k for k ≥ 1 are i.i.d. Probabilistically speaking, what happens on one of the

blocks is typical for the behavior of the process overall, and it repeats itself on each

block. The Strong Law of Large Numbers is the third main ingredient in the

proof.
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Theorem 3.1.3 (Long-run fraction of time spent in a state). Let (Xn)n≥0 be an

irreducible Markov chain with state space S and initial distribution π0. For x ∈ S,

consider mx = Ex(T x), the mean return time to state x. Then the long-run fraction

of time the Markov chain spends in state x is

lim
n→∞

1

n

n−1∑
k=0

1{x}(Xk) =
1

mx

with probability 1 . (3.9)

Proof. We will use the notation Ṽ x
n =

∑n−1
k=0 1{x}(Xk) for n ≥ 0 (note that this slightly

differs from V x
n in (3.6)). The random variable Ṽ x

n is the number of visits to state x by

time (n− 1) (taking the initial state into account), and

lim
n→∞

Ṽ x
n = Ṽ x

is the long-run total number of visits to state x.

Case 1: Assume the Markov chain is transient. For all x ∈ S, we have Px(T x =∞) > 0,

and so mx = Ex(T x) =∞. By Theorem 2.1.3,

P(Ṽ x <∞) = 1

for any transient state x and any initial distribution of the Markov chain. Thus, with

probability 1,

lim
n→∞

Ṽ x
n

n
= lim

n→∞

1

n

n−1∑
k=0

1{x}(Xk) = 0 =
1

∞
=

1

mx

.

Case 2: We assume the Markov chain is recurrent. Let x ∈ S and consider T x. Since the

Markov chain is also irreducible, for any initial distribution, we habe P(T x < ∞) = 1.

Hence by the strong Markov property, the process (Yn)n≥0 = (XTx+n)n≥0 is a Markov chain

that starts in state x and has the same transition probabilities as the original Markov

chain (Xn)n≥0. The long-run number of visits to state x for trajectories for (Xn)n≥0 and

corresponding trajectories for (XTx+n)n≥0 can differ at most by one (accounting for the

initial state X0). So the long-run fraction of time spent in state x is the same for both

Markov chains. As a consequence we have

lim
n→∞

1

n

n−1∑
k=0

1{x}(Xk) = lim
n→∞

1

n

n∑
s=1

1{x}(Xs) . (3.10)
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For the rest of the proof we will assume that the Markov chain starts in state x. What

follows is similar to the proof of Theorem 3.1.1. We consider the kth-return times T x,k to

state x defined by T x,0 = 0 and

T x,k = min{n : n > T x,k−1 and Xn = x} for k ≥ 1 .

Applying the Strong Law of Large Numbers to the i.i.d. random variables (T x,k−T x,k−1),

we get

lim
n→∞

T x,n

n
= Ex(T x) with probability 1 . (3.11)

Here also we consider the random variables V x
m defined by

V x
m =

m∑
s=1

1{x}(Xs) for m ≥ 1

which give the number of returns to state x by time m. The most recent (up to time m)

return to x happens at time T x,V
x
m ≤ m. After that time, the Markov chain will next visit

x at time T x,V
x
m+1 > m. So we have

T x,V
x
m ≤ m ≤ T x,V

x
m+1 ,

and hence, assuming m is large enough so V x
m ≥ 1,

T x,V
x
m

V x
m

≤ m

V x
m

≤ T x,V
x
m+1

V x
m

. (3.12)

Taking the limit as m → ∞ on all three sides of (3.12) and applying (3.11) and (3.10),

we get

lim
m→∞

1

m

m−1∑
k=0

1{x}(Xk) =
1

mx

with probability 1 ,

which completes the proof.

Remark 3.1.4. For the positive recurrent case, we can also derive (3.9) as a corol-

lary to Theorem 3.1.1, applied to the indicator function f = 1{x} on S. The result

follows from Eπ(1{x}) = π(x) and π(x) = 1
mx

(recall Theorem 2.2.8).
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Corollary 3.1.5 (Expected long-run fraction of time spent in a state). Let (Xn)n≥0

be an irreducible Markov chain with state space S and initial distribution π0. For

x ∈ S, consider mx = Ex(T x), the mean return time to state x. Then the expected

long-run fraction of time the Markov chain spends in state x is
1

mx

.

In particular, if X0 = z, we have

lim
n→∞

1

n

n−1∑
k=0

P k
zx =

1

mx

. (3.13)

Proof. Note that for all n ≥ 1,

0 ≤ 1

n

n−1∑
k=0

1{x}(Xk) ≤ 1 . (3.14)

Hence we can apply the Dominated Convergence Theorem (Theorem C.3.3) to the se-

quence of random variables

Yn =
1

n

n−1∑
k=0

1{x}(Xk) for n ≥ 1 ,

which yields the result.

Remark 3.1.6. (a) (3.13) tells us that for any states x, z ∈ S, the sequence

{P k
zx}k≥1 of k-step transition probabilities converges in Cesàro means. Conver-

gence in Cesàro means is a weaker form of convergence than (regular) convergence

of a sequence (see Exercise 3.1). We will address results surrounding the stronger

form of convergence of the k-step transition probabilities in the next section.

(b) If we do not assume irreducibility of the Markov chain, then (3.13) becomes

lim
n→∞

1

n

n−1∑
k=0

P k
zx =

fzx
mx

(3.15)

where fzx = Pz(T x <∞).
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Remark 3.1.7. For fzx > 0 and x a positive recurrent state, the limit of the Cesàro

means in (3.15) is positive. Hence the expected long-run number of visits to state

x is O(n). On the other hand, if x is either transient or null recurrent (in both

cases the Cesàro limit is 0), the expected long-run number of visits to x is of strictly

smaller order than n. For the transient case, this is not a new result, since we

already know that the expected number of visits to x is finite. However for the

null recurrent case this does give us a new insight. A null recurrent state, being

recurrent, is revisited infinitely many times with probability 1. But by (3.15), this

number of revisits is of strictly smaller order than n, i.e., it is of order o(n) (which

is due to the“relatively long return time”; although the return time is finite with

probability 1, it has infinite expectation).

3.2 Convergence

Theorem 3.2.1 (Convergence theorem). Let (Xn)n≥0 be an irreducible, positive

recurrent, aperiodic Markov chain on discrete state space S with transition matrix

P. Let π be the unique stationary distribution for the chain. Then π is also the

limiting distribution for the chain, that is,

lim
n→∞

P n
xy = π(y) for all x, y ∈ S .

As a consequence, for any initial distribution π0 for the chain, we have

lim
n→∞

πn(y) = π(y) for all y ∈ S

where πn denotes the distribution of Xn for n ≥ 0.

Proof. The proof we present is due to Doeblin1 and uses a coupling argument. Briefly put,

coupling is a method by which one constructs two or more Markov chains on the same

probability space. One can then use properties of the joint distribution of the coupled

Markov chains to prove results about the distributions of the individual Markov chains.

We will discuss the method of coupling in more detail in Section 11.3.

We consider two Markov chains (Xn)n≥0 and (Yn)n≥0 that have the same (finite or infinite)

state space S and the same transition matrix P. We will specify their initial distribu-

tions later in the proof. We then construct the special independent coupling of the two

1Wolfgang Doeblin, German-Jewish mathematician (1915–1940)
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chains that results in the Markov chain (Xn, Yn)n≥0 with state space S2 and transition

probabilities

P̃(x,r),(y,s) := PxyPrs . (3.16)

The underlying common probability space for the chain (Xn, Yn)n≥0 is the direct product

of the probability space that (Xn)n≥0 is defined on and the probability space that (Yn)n≥0

is defined on. We now show that (Xn, Yn)n≥0 is an irreducible, positive recurrent Markov

chain.

Let (x, r), (y, s) ∈ S2. Since the transition matrix P is irreducible and aperiodic, there

exists an N > 0 such that

P n
xy > 0 and P n

rs > 0 for n ≥ N .

Therefore

P̃ n
(x,r),(y,s) = P n

xyP
n
rs > 0 for n ≥ N .

It follows that the coupling (Xn, Yn)n≥0 is irreducible and aperiodic.

Next we show positive recurrence of (Xn, Yn)n≥0. Consider the distribution π̃ on S2 defined

by π̃(x, r) := π(x)π(r). We have∑
(x,r)∈S2

π̃(x, r)P̃(x,r),(y,s) =
∑
x∈S

∑
r∈S

π(x)π(r)PxyPrs

=

(∑
x∈S

π(x)Pxy

)(∑
r∈S

π(r)Prs

)
= π(y)π(s) = π̃(y, s) .

This shows that π̃ is a stationary distribution for (Xn, Yn)n≥0, and so the Markov chain

(Xn, Yn)n≥0 is positive recurrent.

Let ∆ = {(a, a) : a ∈ S} be the diagonal in S2. Consider the random variable

T∆ = min{n ≥ 1 : (Xn, Yn) ∈ ∆} ,

that is, the first time the chain visits (any point on) the diagonal. For simplicity, we will

denote T = T∆. Since (Xn, Yn)n≥0 is irreducible and recurrent, we have P(T < ∞) = 1.

This implies

lim
n→∞

P(T > n) = 0 .

It follows from the Markov property that

P(Xn = y |T ≤ n) = P(Yn = y |T ≤ n) for n ≥ 1 , (3.17)

since from time T onwards, after (Xn, Yn)n≥0 has hit ∆, the laws of the random variables

Xn and Yn will be the same. Multiplying both sides of (3.17) by P(T ≤ n) gives
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P(Xn = y, T ≤ n) = P(Yn = y, T ≤ n) for n ≥ 1 .

By the law of total probability,

P(Xn = y) = P(Xn = y, T ≤ n) + P(Xn = y, T > n) ,

P(Yn = y) = P(Yn = y, T ≤ n) + P(Yn = y, T > n) .

It follows that

P(Xn = y)− P(Xn = y, T > n) = P(Yn = y)− P(Yn = y, T > n) .

Note that

lim
n→∞

P(Xn = y, T > n) ≤ lim
n→∞

P(T > n) = 0 ,

lim
n→∞

P(Yn = y, T > n) ≤ lim
n→∞

P(T > n) = 0 .

It follows that

lim
n→∞

[P(Xn = y)− P(Yn = y)] = 0 . (3.18)

Finally, let us specify the initial distributions for the chains (Xn)n≥0 and (Yn)n≥0. We let

chain (Xn)n≥0 start in state x and chain (Yn)n≥0 start in the stationary distribution π.

Then P(Yn = y) = π(y) for all n ≥ 0, and thus (3.18) yields

lim
n→∞

P(Xn = y) = lim
n→∞

P n
xy = π(y) for all x, y ∈ S .

This completes the proof of the convergence theorem.

As a consequence of Theorem 3.2.1, for an irreducible, aperiodic Markov chain with finite

state space S and |S| = k, transition matrix P, and stationary distribution π, we have

Pn n→∞−−−→


π(1) π(2) · · · π(k)

π(1) π(2) · · · π(k)
...

...
...

π(1) π(2) · · · π(k)

 .

Example 3.2.1. Let 0 < p < 1. Consider the Markov chain (Xn)n≥0 with S = {0, 1, 2}
and transition matrix

P =

 0 1 0

1− p 0 p

0 1 0
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0 1 2

1

1− p

p

1
.

Figure 3.2

and whose transition graph is shown in Figure 3.2. The Markov chain is irreducible and

periodic with period 2. The Markov chain (Xn, Yn)n≥0 as constructed in the proof of

Theorem 3.2.1 has state space S × S (with 9 states). Figure 3.3 shows the transition

graph for (Xn, Yn)n≥0 (the arrows represent positive one-step transition probabilities).

(2, 0) (2, 2)

(1, 1)(0, 0) (0, 2)

(1, 2) (2, 1)

(0, 1) (1, 0)

Figure 3.3

The set of blue states in the above diagram is the diagonal ∆ = {(0, 0), (1, 1), (2, 2)} of

S ×S. The Markov chain (Xn, Yn)n≥0 has two irreducible closed classes and, as shown in

the proof of Theorem 3.2.1, cannot have transient states. Since (Xn, Yn)n≥0 is reducible,

the coupling argument in the proof of Theorem 3.2.1 breaks down. Indeed, the Markov

chain (Xn)n≥0 does not converge due to its periodicity. �

Theorem 3.2.2 (Periodic case). Let (Xn)n≥0 be an irreducible, positive recurrent

Markov chain with transition probabilities Pxy, x, y ∈ S and unique stationary dis-

tribution π. Assume the Markov chain is periodic with period c ≥ 2. Then for any

x, y ∈ S there exists a unique integer r with 0 ≤ r ≤ c− 1 such that

lim
n→∞

P r+nc
xy = c π(y) .

Proof. Let x, y ∈ S. Consider the partition of S into its cyclic classes S0, S1, ..., Sc−1.

Without loss of generality, let us assume that x ∈ S0 and y ∈ Sr. For δx (i.e., unit mass
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at state x), let µ = δx Pr. Note that µ is a probability distribution concentrated on Sr.

We now consider the Markov chain (Yn)n≥0 with Yn = Xcn, n ≥ 0, with initial distribution

µ. It can be viewed as a Markov chain on reduced state space Sr. By Proposition 2.4.7,

this Markov chain is irreducible and aperiodic. By Corollary 2.4.8, its unique stationary

distribution is πSr(y) = c π(y) for y ∈ Sr. Hence, by Theorem 3.2.1, we have

lim
n→∞

P r+nc
xy = lim

n→∞
Px(Xr+nc = y) = lim

n→∞
Pµ(Yn = y) = c π(y) .

Example 3.2.2. We return to Example 3.2.1. This is an irreducible Markov chain on

S = {0, 1, 2}, hence it is positive recurrent. Its stationary distribution is π = (1−p
2
, 1

2
, p

2
).

The Markov chain is periodic with period 2. Its cyclic classes are S0 = {0, 2} and S1 = {1}.
A direct computation yields

P2 =

 1− p 0 p

0 1 0

1− p 0 p

 and P3 =

 0 1 0

1− p 0 p

0 1 0

 = P (3.19)

from which we conclude that P1+2n = P for all n ≥ 0, and P2n = P2 for all n ≥ 1.

Case 1: Let x and y be in different cyclic classes. Then by Theorem 3.2.2,

lim
n→∞

P 1+2n
xy = 2π(y) .

We verify that this is indeed the case by reading off from (3.19) that

lim
n→∞

P 1+2n
0,1 = 1 = 2π(1), lim

n→∞
P 1+2n

2,1 = 1 = 2π(1),

lim
n→∞

P 1+2n
1,0 = 1− p = 2π(0), lim

n→∞
P 1+2n

1,2 = p = 2π(2) .

Case 2: Let x and y be in the same cyclic class. Then by Theorem 3.2.2,

lim
n→∞

P 2n
xy = 2π(y) .

We verify that this is indeed the case by reading off from (3.19) that

lim
n→∞

P 2n
0,0 = 1− p = 2π(0), lim

n→∞
P 2n

0,2 = p = 2π(2), lim
n→∞

P 2n
1,1 = 1 = 2π(1) ,

and similarly for the rest. This illustrates Theorem 3.2.2. �



3.3. LONG-RUN BEHAVIOR OF REDUCIBLE CHAINS 113

We quote the following result for null recurrent states. For a reference see [29].

Theorem 3.2.3 (Orey’s theorem). Let (Xn)n≥0 be a Markov chain on state space

S and assume y ∈ S is a null recurrent state. Then

lim
n→∞

P n
xy = 0 for all x ∈ S .

As a consequence, for any initial distribution π0 for the chain, we have

lim
n→∞

πn(y) = 0

where πn denotes the distribution of Xn for n ≥ 0.

3.3 Long-run behavior of reducible chains

Here we combine the results from the previous sections to understand the asymptotic

behavior of reducible Markov chains. Let (Xn)n≥0 be a reducible Markov chain on (finite

or infinite) state space S. In general, for given y ∈ S, whether or not lim
n→∞

πn(y) exists,

and if so, its value, will depend on the initial distribution π0 of the chain.

Case 1: y ∈ S is either null recurrent or transient. Then by Theorem 3.2.3 and by

Corollary 2.1.4 we have

lim
n→∞

P n
xy = 0 for all x ∈ S ,

and hence

lim
n→∞

πn(y) = 0 for any initial distribution π0 of the chain .

Case 2: y ∈ S is positive recurrent. Then y ∈ Rk for a unique irreducible closed class Rk

of (positive) recurrent states for the chain. There exists a unique stationary distribution

πRk that is concentrated on Rk.

(a) If x ∈ Rj where Rj is an irreducible closed class that is distinct from Rk, then x does

not lead to y and therefore

lim
n→∞

P n
xy = 0 .

(b) If x ∈ Rk and the states in Rk are aperiodic, then

lim
n→∞

P n
xy = πRk(y) .

If the states in Rk are periodic with period c ≥ 2, then the above limit does not exist.
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(c) If x is a transient state and the states in Rk are aperiodic, then

lim
n→∞

P n
xy = (ax,Rk)πRk(y)

where ax,Rk is the (absorption) probability that, given that the chain starts in state x,

it will eventually enter Rk. If the states in Rk are periodic with period c ≥ 2, then the

above limit does not exist.

Example 3.3.1. Recall Exemples 2.3.2 and 2.3.3. The Markov chain has state space

S = {1, 2, ..., 6} and transition matrix (in canonical form)

P =

3 1 4 6 2 5



3 1 0 0 0 0 0

1 0 0 0.1 0.9 0 0

4 0 0.5 0.1 0.4 0 0

6 0 1 0 0 0 0

2 0.2 0.1 0 0 0.3 0.4

5 0.3 0 0.1 0 0.6 0

.

The irreducible closed classes are R1 = {3} and R2 = {1, 4, 6} and are aperiodic. States

3, 1, 4, 6 are positive recurrent states (finite-state Markov chain do not have null recurrent

states). We compute

πR1 = (1, 0, ..., 0)

and

πR2 = (0,
18

37
,

2

37
,
17

37
, 0, 0) .

In Example 2.3.3 we have computed for the absorption probabilities (written as a matrix):

A =

R1 R2( )
2 0.7 0.3

5 0.72 0.28
.

Here the n-step transition matrices do approach a limit L as n→∞. We have

Pn n→∞−−−→

3 1 4 6 2 5



3 1 0 0 0 0 0

1 0 18
37

2
37

17
37

0 0

4 0 18
37

2
37

17
37

0 0

6 0 18
37

2
37

17
37

0 0

2 0.7 (0.3)18
37

(0.3) 2
37

(0.3)17
37

0 0

5 0.72 (0.28)18
37

(0.28) 2
37

(0.28)17
37

0 0

= L .
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Assuming the Markov chain starts with initial distribution π0, we have

lim
n→∞

πn = lim
n→∞

π0P
n = π0L .

�

Exercises

Exercise 3.1 (Cesàro means). (a) Consider a sequence {an}n≥1 of real numbers with

lim
n→∞

an = a and consider its Cesàro means

cn =
1

n

n∑
k=1

ak

for n ≥ 1. Prove that {cn}n≥1 is also convergent and lim
n→∞

cn = a .

(b) Show that the converse of the statement of part (a) is not true. That is, show that if

a sequence {an}n≥1 converges in Cesàro means, it does not imply that {an}n≥1 converges.

Exercise 3.2. Consider a Markov chain (Xn)n≥0 with state space S = {1, 2, ..., 7} and

transition matrix

P =

1 2 3 4 5 6 7



1 0.5 0.5 0 0 0 0 0

2 0.8 0.2 0 0 0 0 0

3 0 0 0 0.4 0.6 0 0

4 0 0 1 0 0 0 0

5 0 0 1 0 0 0 0

6 0.1 0 0.2 0.1 0.2 0.3 0.1

7 0.1 0.1 0.1 0 0.1 0.2 0.4

.

Recall the notation fx,y = P(T y < ∞|X0 = x). Compute the following probabilities:

f4,5, f6,2, f6,5, f6,6, and f6,7.

Exercise 3.3. Consider a so-called 1-server queue, where at time n, a number Xn of

customers are in queue. The first in line of these Xn customers is being served, while

the rest of the customers are waiting. During each time interval, the probability that a

new customer joins the queue is p = 1/5, and the probability that the customer currently

being served finishes their service and leaves the queue is q = 1/3. This system defines

a Markov chain (Xn)n≥0 with state space N0. What is the long-run expected fraction of

time the queue is empty?
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Exercise 3.4. Consider a Markov chain (Xn)n≥0 with state space S = {1, 2, ..., 7} and

the transition matrix P from Exercise 3.2. Compute the following limits (if they exist).

If a limit does not exist, explain why.

(a) lim
n→∞

P n
1,2, lim

n→∞
P n

6,2, lim
n→∞

P n
6,7, lim

n→∞
P n

6,5

(b) lim
n→∞

1

n

n∑
k=1

P k
6,5 (c) lim

n→∞
Pn

Exercise 3.5. Consider a Markov chain on state space S = {1, 2, ...} whose transition

probabilities are

Pxy =
1

x+ 1
for y = 1, 2, ..., x+ 1.

Compute the mean return time to state 1.

Exercise 3.6. Consider the Markov chain on state space S = N0 with transition proba-

bilities

Px,x+1 =
1

x+ 1
and Px,0 =

x

x+ 1
for all x ≥ 0 .

(a) Will this Markov chain converge to a unique limiting distribution? If so, compute

this distribution.

(b) Let x > 0. What is the expected number of visits to state 0 between two consecutive

visits to state x?

Exercise 3.7. Each morning a student takes one of the three books he owns from his

shelf. The probability that he chooses Book i is αi with α1 = 1/3, α2 = 1/2, α3 = 1/6. We

assume that his choices on successive days are independent. In the evening, he replaces

the book at the left-hand end of the shelf. Let pn denote the probability that on day n

the student finds the books in order 1, 2, 3 (from left to right). Show that, irrespective of

the initial arrangement of the books, lim
n→∞

pn exists, and determine the limit. (This type

of process is a sorting scheme known as a Tsetlin library.)

Exercise 3.8. A fair 6-sided die is rolled repeatedly. Consider the Markov chain (Xn)n≥1

where Xn denotes the sum of the first n rolls. Does

lim
n→∞

P(Xn is a multiple of 7)

exist? Why or why not? If the limit exists, compute it.
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Exercise 3.9. A Math graduate student owns 2 bikes which she keeps either at home or

on a bike rack near her campus office. Every day she makes two journeys: In the morning

she travels to her campus office, and in the evening she returns home. When it rains, she

always walks. When the weather is clear, she bikes, provided that at least one of her bikes

is parked at her location of departure (her home or her campus office). Suppose that it

rains on each journey with probability p independently of past or future weather. What

is the long-run proportion of journeys on which she has to walk although the weather is

clear?



Chapter 4

Random Walks on Z

4.1 Basics

We have introduced general random walk on Z in Example 1.5.3. In this chapter, we will

mainly (but not exclusively) focus on simple random walk on Z. We begin with the basic

definition.

Definition 4.1.1 (Simple random walk on Z). Let X1, X2, .... be a sequence of i.i.d.

random variables taking values in {−1, 1}.

• The stochastic process (Sn)n≥0 defined by S0 = 0 (unless otherwise noted) and

Sn =
n∑
k=1

Xk

for n ≥ 1 is called simple random walk on Z.

• If P(Xk = 1) = P(Xk = −1) = 1
2
, we call the process simple symmetric

random walk on Z. Otherwise, we call the process simple biased random

walk on Z.

Simple random walk on Z is a Markov chain, more specifically it is a birth/death chain

with transition probabilities Px,x+1 = p and Px,x−1 = 1 − p for some fixed p ∈ (0, 1)

and for all x ∈ Z. The underlying probability space for (Sn)n≥0 can be identified with

Ω = {−1, 1}N, the space of all infinite binary sequences. Elements ω ∈ Ω are in one-to-one

correspondence with trajectories, also called sample paths, for (Sn)n≥0 where Sn is the

location of the random walk at time n. The easiest way to visualize a trajectory is via

a graph that plots location against time (and has line segments connecting neighboring

points (n, Sn) and (n+ 1, Sn+1)). Figure 4.1 shows a sample path for simple random walk

118
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Sn

1 2 3
0

n time

Figure 4.1: A sample path for simple random walk on Z

on Z. For simple symmetric random walk, for all n ≥ 1, we have

E(Sn) = 0 and Var(Sn) = n .

By the Central Limit Theorem,

Sn√
n

n→∞−−−→ N(0, 1) in Distribution

where N(0, 1) is a standard normal random variable. Recall that for a normal random

variable centered at 0, the probability that its absolute value exceeds three standard

deviations is very small, only about 0.003. Therefore for large n, we have

P(−3
√
n ≤ Sn ≤ 3

√
n) ≈ 0.997 . (4.1)

The green shaded region in Figure 4.2 marks the region bounded by −3
√
n and 3

√
n in

the vertical direction. The two red lines mark the boundaries for any trajectory. For

large times n, the point (n, Sn) on a trajectory will fall inside the green region for an

overwhelming majority of trajectories.

Simple random walk on Z is periodic with period 2. Given that the walk starts at 0, at

even times it can only be at an even integer, and at odd times at an odd integer. Hence

if x and y have unequal parity, then P 2n
xy = 0 for n ≥ 1.

Notice that for random walk on Z, due to the translation invariance of the one-step

transition probabilities, we have

P n
xy = P n

0,(y−x) for all x, y ∈ Z and n ≥ 1.

It therefore suffices to study the transition probabilities P n
0m for m ∈ Z.

Let m ≥ 0 and n ≥ 1 with m ≤ n. We assume that either both m and n are even or both

m and n are odd. For the walk to end up at m in n steps, it must have taken x steps to

the left and x+m steps to the right (in any order), with 2x+m = n. There are(
n

n−m
2

)
=

(
n

n+m
2

)
(4.2)
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Figure 4.2

such binary sequences (sequences of left/right steps) of length n. We denote the number of

paths of length n that end up at m by Nn(0,m). The one-to-one correspondence between

binary sequences and paths yields

Nn(0,m) =

(
n

n+m
2

)
for m > 0 .

Now let m < 0. For the walk to end up at m in n steps, it must have taken x steps

to the right and x + |m| steps to the left (in any order), with 2x + |m| = n. Because

of symmetry, the number of such sequences is also (4.2). For simple symmetric random

walk, each binary sequence of length n occurs with the same probability 1
2n

. This yields

the following transition probabilities:

Proposition 4.1.1. For simple symmetric random walk on Z,

P(Sn = m) = P n
0m =

(
n

n+m
2

)
1

2n
for m ∈ {−n,−n+ 2, ..., n− 2, n} . (4.3)

Notice for simple symmetric random walk, the distribution of Sn is symmetric, i.e., P(Sn =

m) = P(Sn = −m). If n is even, the mass function in (4.3) takes its maximum at m = 0,

and if n is odd, it takes its maximum at −1 and 1.

Now assume that we have biased random walk with P(Xk = 1) = p and P(Xk = −1) =

1 − p. Set q = 1 − p. For m ≥ 0, any path of length n that ends up at m, occurs with

probability

p
n+m

2 q
n−m

2 . (4.4)
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And for m < 0, any path of length n that ends up at m, occurs with probability

p
n−|m|

2 q
n+|m|

2 , which can be rewritten as (4.4). Hence we arrive at the following result:

Proposition 4.1.2. For simple biased random walk on Z with P(Xk = 1) = p and

P(Xk = −1) = q and p+ q = 1,

P(Sn = m) = P n
0m =

(
n

n+m
2

)
p
n+m

2 q
n−m

2 for m ∈ {−n,−n+ 2, ..., n− 2, n} .

4.2 Pólya’s Random Walk Theorem

Here we present Pólya’s famous theorem about recurrence / transience of simple symmet-

ric random walk on the integer lattice Zd. A number of alternate proofs are available. We

will return to Pólya’s theorem in Section 8.6, where we will reprove the result by taking

the electric network approach to the study of random walks on graphs.

Theorem 4.2.1 (Pólya, 1921). Simple symmetric random walk on Zd is recurrent

for d = 1 and d = 2 and transient for d > 2. Simple biased random walk on Zd is

transient for all d ≥ 1.

Proof. We separate the proof by the dimension d.

Case d = 1.

Clearly, simple random walk on Z is irreducible, so it suffices to prove that the expected

number of returns to a given state is infinite. Let this state be 0. We will compute∑∞
n=1 P

n
00. Note that P n

00 = 0 if n is odd. So we only need to consider n = 2m. Returning

to the starting point in 2m steps means that the walk must have taken m steps to the

right and m steps to the left (in any order). Thus we have

P 2m
00 =

(
2m

m

)
pm(1− p)m .

Convergence or divergence of the series
∑∞

m=1

(
2m
m

)
pm(1−p)m will of course be determined

by the asymptotics of
(

2m
m

)
pm(1 − p)m. Using Stirling’s approximation (A.1) we get, for

large m, (
2m

m

)
pm(1− p)m ≈ (2m)2me−2m

√
2π2m(

mme−m
√

2πm
)2 pm(1− p)m =

(4p(1− p))m√
πm

.
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Note that 4p(1− p) < 1 for p 6= 1
2
. Thus

∞∑
m=1

P 2m
00 <∞ for p 6= 1

2
,

and so biased simple random walk on Z is transient. For p = 1
2
, we have P 2m

00 ≈ 1√
πm

, and

so
∞∑
m=1

P 2m
00 =∞ for p =

1

2
,

which implies that simple symmetric random walk on Z is recurrent.

Case d = 2.

First simple symmetric random walk on Z2. The walk takes steps north, south, east,

or west on the 2-dimensional integer lattice, each with probability 1
4
. Equivalently, we

can consider simple symmetric random walk on the diagonal lattice which is the green

lattice in Figure 4.3. Simple symmetric random walk on the green lattice arises from two

independent steps of simple symmetric random walk on Z. Hence for large m, we can use

the approximation

P 2m
00 ≈

(
1√
πm

)2

=
1

πm
,

and thus
∞∑
m=1

P 2m
00 =∞ .

This shows that simple symmetric random walk on Z2 is recurrent. For simple biased

O

Figure 4.3

random walk on Z2 consider its projection onto the east-west or the north-south axis

(choose a direction in which the walk is biased). under this projection, we have biased

random walk on Z with positive holding probability. Adding fixed holding probability to

each state and (and appropriately rescaling the transition probabilities) does not change
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transience or recurrence of a Markov chain. Thus the projected one-dimensional (assumed

biased) random walk is transient. It must follow that the original biased random walk on

Z2 is also transient, since returning to 0 infinitely often requires returning to 0 infinitely

often (and simultaneously) in both directions.

Case d = 3.

Simple symmetric random walk on Z3 takes steps east, west, north, south, up, or down

with equal probability 1
6
. Note that we cannot extend the argument from the 2 dimensional

case to the 3-dimensional case: Combining three independent one-dimensional random

walks would create 8 possible directions for each step for the alternative random walk,

however simple random walk on Z3 progresses in one of 6 possible directions in each step.

Instead, we explicitly calculate the return probabilities. If the walk returns to 0 at time

2m, then it must have taken i steps east (and hence also i steps west), j steps north (and

hence also j steps south), and m− i− j steps up (and hence also m− i− j steps down).

Thus

P 2m
00 =

∑
i,j≥0
i+j≤m

(2m)!

(i! j! (m− i− j)!)2

(
1

6

)2m

=

(
1

2

)2m(
2m

m

) ∑
i,j≥0
i+j≤m

(
m!

i! j! (m− i− j)!

(
1

3

)m)2

.

Since ∑
i,j≥0
i+j≤m

m!

i! j! (m− i− j)!

(
1

3

)m
= 1 ,

we get

P 2m
00 ≤

(
1

2

)2m(
2m

m

)
max
i,j≥0
i+j≤m

(
m!

i! j! (m− i− j)!

(
1

3

)m)
.

The multinomial coefficient m!
i! j! (m−i−j)! is a maximum when i and j are m/3 (or as close

as possible, since they are integers), so

P 2m
00 ≤

(
1

2

)2m(
2m

m

)
m!

((m/3)!)3

(
1

3

)m
.

Applying Stirling’s approximation to the right hand side yields(
1

2

)2m(
2m

m

)
m!

((m/3)!)3

(
1

3

)m
≈ C

1

m3/2
,

for some constant C that does not depend on m. And so for large m we have

P 2m
00 ≤ C

1

m3/2
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which implies
∞∑
m=1

P 2m
00 <∞ .

This shows that simple symmetric random walk on Z3 is transient. By a similar projection

argument that we have used in lower dimensions, we also know that simple biased walk

on Z3 is transient.

Case d ≥ 4.

Simple random walk in dimension 4 or higher is transient: Consider the projected random

walk onto the first 3 dimensions, which is transient.

Remark 4.2.2. Consider simple symmetric random walk on Zd. The asymptotics

for the return probabilities P 2m
00 for any d ≥ 1 are well known:

P 2m
00 ∼ 2

(
d

4mπ

)d/2
as m→∞ . (4.5)

Note that this formula matches with our computations for d = 1 and d = 2. For a

proof of (4.5), see [34].

Pólya’s stroll in the park:

Pólya was motivated to study random walks, more precisely collisions of two independent

walks, when he noticed that he frequently ran into the same couple during his daily walks

in the woods near his hotel where he was staying during a conference. How often will two

random walkers meet? Assume both parties start at the origin O at time 0. See figure ??

for an illustration. We keep track of the two walkers’ location relative to each other and

interpret these changing locations as a single simple symmetric random walk of only one

of the walkers and for which we record only every other step. With this viewpoint, Walker

1, say, is the “moving origin”, and Walker 2 performs a simple symmetric random walk

on a (moving) Z2 lattice for which only every other step (and hence the location at even

times only) is being recorded. Since simple symmetric random walk on Z2 is recurrent,

and returns to the starting point can only occur at even times, it follows that Walker

2 will “return” to the moving origin (= the location of Walker 1) infinitely many times

with probability 1. Walker 1 and Walker 2 will meet on their random walk in the park

infinitely many times with probability one (unless they get tired around dinner time

and return to their hotels).
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Note that this is not to say that the two walkers will meet at the (fixed) origin O infinitely

many times. In fact, the expected number of times at which Walker 1 and Walker 2 meet

at O is finite. This follows since their individual walks are independent, and so the

probability that both are at O at a specific time n is the product of their individual

probabilities of being at O at that time. Based on this, one shows that the expected

number meetings at O is finite.

Also note that a parity issue can arise: If the two walkers start at different locations, for

example one step apart from each other, then they can never meet. If they start at an

even number of steps apart from each other, then they will meet infinitely many times

with probability one.

o
meet

Walker 2

Walker 1

Figure 4.4: Two independent random walkers meet

4.3 Wald’s Equations

For a random walk (Sn)n≥0, the expectation of the location of the walk at time n is of

obvious interest. For a fixed time n, the expectation E(Sn) = nE(Xi) is immediate. But

what if time itself is a random variable T , is it then true that E(ST ) = E(T )E(Xi), as

one might guess? The answer is no in general, as the following example illustrates.

Example 4.3.1. Let (Sn)n≥0 be simple symmetric random walk starting at 0. Consider

the random time T defined by

T = min{n : Xn+1 = −1}

which is the number of steps the walk takes to the right before its first step to the left.

For an illustration, see Figure 4.5. Then T + 1 ∼ Geom(1
2
), and we compute E(T ) = 1.

Clearly, ST = T · 1 = T , and so E(ST ) = 1 as well. But

E(T )E(Xi) = 1 · 0 6= 1 = E(ST ) .

�
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T

ST

Figure 4.5

Theorem 4.3.1 gives conditions on the random time T and on the type of dependence of

T and the random variables Xi, i ≥ 1, that guarantee that E(ST ) = E(Xi)E(T ) holds.

Theorem 4.3.1 (Wald’s equations). Let X1, X2, .... be i.i.d. random variables with

E(|X|i) < ∞. Consider (Sn)n≥1 with Sn =
∑n

i=1 Xi, and let T be a stopping time

for (Sn)n≥1.

(a) Wald’s first equation: If E(T ) <∞, then

E(ST ) = E(Xi)E(T ) . (4.6)

(b) Wald’s second equation: If E(T ) < ∞ and, in addition, E(Xi) = 0 and

Var(Xi) = σ2 <∞, then

Var(ST ) = σ2 E(T ) . (4.7)

Proof. (a) First, note that we can write

ST =
T∑
i=1

Xi =
∞∑
i=1

Xi1{T≥i} .

Taking expectations, we get

E(ST ) = E

(
∞∑
i=1

Xi1{T≥i}

)
=
∞∑
i=1

E(Xi1{T≥i}) (4.8)

where the interchange of E and
∑

is justified as we will now show: For all n ≥ 1,

n∑
i=1

Xi1{T≥i} ≤
n∑
i=1

|Xi|1{T≥i} ≤
∞∑
i=1

|Xi|1{T≥i} .

By the Monotone Convergence theorem, we have

E(
∞∑
i=1

|Xi|1{T≥i}) = E( lim
n→∞

n∑
i=1

|Xi|1{T≥i}) = lim
n→∞

E(
n∑
i=1

|Xi|1{T≥i}) .
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Since the event {T ≥ i} = {T ≤ i−1}c is defined by the random variables X1, X2, ..., Xi−1,

the random variables 1{T≥i} and Xi are independent, and we have E(|Xi|1{T≥i}) =

E(|Xi|)P(T ≥ i). Thus

E(
∞∑
i=1

|Xi|1{T≥i}) = E(|Xi|)
∞∑
i=1

P(T ≥ i) = E(|Xi|)E(T ) <∞ . (4.9)

It follows that the random variable
∑∞

i=1 |Xi|1{T≥i} is integrable, and it dominates the

random variables
∑n

i=1Xi1{T≥i} for all n ≥ 1. By the Dominated Convergence theorem,

the interchange of lim and
∑

in (4.8) is justified.

From (4.8) we then get

E(ST ) =
∞∑
i=1

E(Xi)P(T ≥ i) = E(Xi)
∞∑
i=1

P(T ≥ i) = E(Xi)E(T ) ,

which proves (a). (For an alternate proof of Wald’s first equation using martingale tech-

niques, see Corollary 6.2.3.)

(b) Our proof follows the outline of the proof presented in [12]. By (4.6), E(ST ) = 0, and

so Var(ST ) = E(S2
T ). For each i ≥ 1, define the new (thus bounded) stopping time

T ∧ i := min{T, i}.

Since P(T <∞) = 1 by assumption, we have

lim
i→∞

ST∧i = ST a.s. (4.10)

In the following we will compute E(S2
T∧i), and then argue that lim

i→∞
E(S2

T∧i) yields (4.7).

We can rewrite S2
T∧i as

S2
T∧i = S2

T∧(i−1) + (2XiSi−1 +X2
i )1{T≥i} . (4.11)

As explained above, the random variables 1{T≥i} and Xi are independent. Hence the

random variables Si−11{T≥i} and Xi are also independent. Taking expectations of both

sides of (4.11) (recall that we assume E(Xi) = 0, and hence E(X2
i ) = σ2) yields the

recursion

E(S2
T∧i) = E(S2

T∧(i−1)) + σ2P(T ≥ i)

from which, by induction, we get

E(S2
T∧i) = σ2

i∑
k=1

P(T ≥ k) . (4.12)
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Note that for the sum on the right-hand side of (4.12), we have

i∑
k=1

P(T ≥ k) = E(T ∧ i) ,

which establishes (4.7) for the finite random variables T ∧ i. We then compute the limit

as i→∞ on both sides of (4.12). For the right-hand side of (4.12), clearly

lim
i→∞

σ2

i∑
k=1

P(T ≥ k) = σ2

∞∑
k=1

P(T ≥ k) = σ2E(T ) . (4.13)

As a last step, we need to prove that lim
i→∞

E(S2
T∧i) = E(S2

T ). Let j < i and consider the

random variable

ST∧i − ST∧j .

Similarly to the expression in (4.11), we can write

(ST∧i − ST∧j)2 = (ST∧(i−1) − ST∧j)2 + (2Xi(Si−1 − Sj) +X2
i )1T≥i

from which, by taking expectations on both sides, we get the recursion

E[(ST∧i − ST∧j)2] = E[(ST∧(i−1) − ST∧j)2] + σ2P(T ≥ i) ,

and by induction,

E[(ST∧i − ST∧j)2] = σ2

i∑
k=j+1

P(T ≥ i) . (4.14)

Since E(T ) < ∞, the sequence of probabilities {P(T ≥ i)}i≥0 is a Cauchy sequence.

Therefore, by (4.14), the sequence of random variables {ST∧i}i≥0 is a Cauchy sequence

with respect to the L2-norm and (by completeness of the L2-space) converges to a limit

random variable Y in L2 (recall Definition B.4.4). By (4.10), we also have a.s. convergence

of {ST∧i}i≥0 to ST , and so Y = ST with probability 1. Since

lim
i→∞

√
E[(ST∧i − ST )2] = 0 ,

it follows from the reverse triangle inequality that

lim
i→∞

√
E(S2

T∧i) =
√
E(S2

T ) ,

and, consequently, we get

lim
i→∞

E(S2
T∧i) = E(S2

T ) . (4.15)

Applying (4.13) and (4.15) to (4.12), we get (4.7). This completes the proof of Wald’s

second equation.
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We finish this section by quoting a theorem for (general) random walk (Sn)n≥0 whose step

distribution has finite mean. The result of the theorem may be useful for checking that

in a given situation the conditions for Wald’s equations are satisfied. We omit the proof

(for a reference see [34]).

Theorem 4.3.2. Let X1, X2, .... be i.i.d. random variables with E(|Xi|) < ∞ and

(Sn)n≥0 random walk with S0 = 0 and Sn =
∑n

i=1 Xi for n ≥ 1. Consider the

first hitting time T of the half-line [1,∞), that is, T = min{n : Sn ∈ [1,∞)}. If

E(Xi) ≥ 0, then

P(T <∞) = 1,

and

(a) if E(Xi) = 0, then E(T ) =∞;

(b) if E(Xi) > 0, then E(T ) <∞.

4.4 Gambler’s Ruin

In the classical gambler’s ruin problem, a gambler starts with a fortune of x dollars and

makes successive 1 dollar bets against the house. The game ends when either the gambler

is ruined (his fortune is 0 dollars) or the gambler’s fortune has reached N dollars. The

probability of wining 1 dollar is p and the probability of losing 1 dollar is 1− p. If p = 1
2
,

we call it a fair game, otherwise a biased game. The process that models the evolution of

the gambler’s fortune over time (until the time the game ends) is simple random walk on

Z. Figure 4.6 shows the transition graph for this process.

0 1 2 N − 1 N1

p

1− p 1− p 1− p1− p

pp p

1

Figure 4.6: Transition graph for the gambler’s ruin process

Questions of interest related to the gambler’s ruin chain, and which we will address in

this section, include:

• Will the game eventually end?

• What is the probability that the gambler will end up ruined?
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• If the game does eventually end, what is the expected duration of the game?

Note that the gambler’s ruin chain is a birth/death chain. Since it is also a random

walk, Wald’s equations will be useful for certain computations. Because of the obvious

translation invariance of the problem, we will study questions about the gambler’s ruin

problem for starting state 0 and a < 0 < b, rather than for starting state x and 0 < x < N .

FAIR GAME:

Let (Sn)n≥0 be simple random walk on Z with X0 = 0 and Sn =
∑n

k=1 Xk where the

random variables Xk are i.i.d with P(Xi = 1) = P(Xi = −1) = 1
2
. Let a ∈ Z− and b ∈ Z+.

States a and b are absorbing states and consitute the boundary, and all other states lead

into {a, b}. By the general theory of finite-state absorbing chains (Section 2.3), the process

will be absorbed in {a, b} in finite time with probability 1, that is, P(T {a,b} < ∞) = 1,

and furthermore E(T {a,b}) < ∞. We can also see this more directly: Without loss of

generality assume b ≥ |a|. Then from any starting point x ∈ (a, b),

Px(T {a,b} ≤ (b− a)) ≥ (
1

2
)b−a

since taking a direct path from x to either point of the boundary {a, b} takes at most

b− a steps. So

Px(T {a,b} > (b− a)) ≤ 1− (
1

2
)b−a

and

P(T {a,b} > n(b− a)) ≤ (1− (
1

2
)b−a)n for all n ≥ 1 .

It follows that the series
∑∞

i=1 P(T {a,b} ≥ i) = E(T {a,b}) converges.

We apply Wald’s first equation for the stopping time T = T {a,b} to compute the ruin

probability r = P(T a < T b). This yields

E(ST ) = 0 = b (1− r) + a r

from which we compute

r =
b

|a|+ b
. (4.16)

Next we apply Wald’s second equation to compute E(T ). Since E(Xk) = 0 and Var(Xk) =

1, Wald’s second equation and (4.16) yield

E(S2
T ) = a2 b

|a|+ b
+ b2 |a|
|a|+ b

= E(T )
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from which we compute

E(T ) = |a| b . (4.17)

We have proved the following result:

Proposition 4.4.1. Consider simple symmetric random walk on Z, and let

a < x < b. Then

Px(T a < T b) =
b− x
b− a

and Px(T b < T a) =
x− a
b− a

, (4.18)

and

Ex(T {a,b}) = (x− a)(b− x). (4.19)

Let a < x. We can use Proposition 4.4.1 to compute Px(T a < ∞) and the expected

hitting time Ex(T a) for simple symmetric random walk by passing to the limit b→∞ in

(4.18) and (4.19). Indeed, since

{T a < T b |S0 = x} ⊆ {T a < T b+1 |S0 = x} for all b > x,

and

{T a <∞|S0 = x} =
∞⋃

b=x+1

{T a < T b |S0 = x},

by the continuity property of probability (recall Lemma B.1.1(a)), we have

Px(T a <∞) = lim
b→∞

Px(T a < T b) . (4.20)

Also, under the same assumption a < x < b, the random variables T {a,b} are nondecreasing

with respect to b, and

lim
b→∞

T {a,b} = T a a.s.,

hence by the Monotone Convergence theorem (recall Theorem C.3.1)), we have

Ex(T a) = lim
b→∞

Ex(T {a,b}) . (4.21)

Example 4.4.1. Consider a compulsive gambler who plays against an infinitely rich

adversary and who will quit the game only at his ruin. Assume the gambler starts with

a fortune of x. From (4.18), we get

Px(T 0 <∞) = lim
b→∞

Px(T 0 < T b)

= lim
b→∞

b− x
b

= 1 .
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And from (4.19), we compute

Ex(T 0) = lim
b→∞

x (b− x) =∞ .

So with probability 1, the game will end with bancruptcy for the gambler in finite time.

But the expected time until the gambler’s bancruptcy is infinite.

The distribution of T 0 can be computed using the results from Proposition 4.5.2 or from

Corollary 4.5.9. �

Remark 4.4.2. Simple random walk with zero holding probability is periodic with

period 2. To avoid periodicity, one often adds positive holding probability h to each

move. That is, for simple symmetric random walk, the distribution of the i.i.d.

random variables Xk will be given by P(Xk = 0) = h and P(Xk = 1) = P(Xk =

−1) = p with h, p > 0 and 2p+h = 1. Notice that this modification does not change

the ruin probabilities r and 1−r. However, since in this case Var(Xk) = 2p < 1, the

expected time E(T ) until absorption becomes E(T ) = 1
2p
|a|b. It should be intuitive

that adding positive holding probability to the walk will “slow things down” and, on

average, the game will last longer (here by a factor 1
2p

). For example, if we take

holding probability h = 1
2
, then on average the walk moves either left or right only

half the time, and the expected time until absorption doubles.

We now use the gambler’s ruin probabilities (4.18) to answer a few additional questions

about simple symmetric random walk. Let a < x < b. We assume that the walk starts in

x. What is the probability that the walk will return to x before absorption in {a, b}? We

denote this probability by P
{a,b}
xx . Conditioning on the first step of the random walk, we

get

P {a,b}xx =
1

2

x− 1− a
x− a

+
1

2

b− x− 1

b− x
which simplifies to

P {a,b}xx = 1− 1

2

b− a
(x− a)(b− x)

.

Let V
{a,b}
xx be the random variable “number of returns to x before absorption in {a, b}”.

By the strong Markov property,

P(V {a,b}xx = n) =
(
P {a,b}xx

)n
(1− P {a,b}xx ) for n ≥ 0 ,

which shows that the random variable V
{a,b}
xx has a geometric distribution with parameter

(1 − P
{a,b}
xx ). The expected number of returns to x before absorption in the boundary

{a, b} is therefore

E(V {a,b}xx ) =
P
{a,b}
xx

1− P {a,b}xx

.
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We can ask similar questions for visits to other states y 6= a, b before absorption. Again,

assume the walk starts in state x. Assume a < y < b and, without loss of generality,

assume x < y. Let P
{a,b}
xy denote the probability that the walk visits state y before

absorption. Then, from (4.18), we get

P {a,b}xy =
x− a
y − a

.

Let V
{a,b}
xy be the random variable “number of visits to y before absorption in {a, b}”. By

the strong Markov property,

P(V {a,b}xy = n) =

 1− P {a,b}xy for n = 0

P
{a,b}
xy

(
P
{a,b}
yy

)n−1

(1− P {a,b}yy ) for n ≥ 1 .

From this we compute the expectation of the random variable V
{a,b}
xy as

E(V
{a,b}
xy ) = P {a,b}xy

∞∑
n=1

n
(
P {a,b}yy

)n−1
(1− P {a,b}yy )

=
P
{a,b}
xy

1− P {a,b}yy

.

�

BIASED GAME:

For a biased game we have P(Xk = 1) = p and P(Xi = −1) = 1 − p with p 6= 1
2
. We

assume 0 < p < 1 and set q = 1 − p. As before, let a < 0 < b. Since this is a finite-

state absorbing chain, here also we have P(T {a,b} < ∞) = 1 and E(T {a,b}) < ∞. Wald’s

identities aren’t useful in this case towards computing the ruin probability Px(T a < T b),

but we will take a different approach which will involve solving a system of equations. We

use the following notation: For a < x < b, let rx = Px(T a < T b) be the probability that

the random walk gets absorbed in boundary state a, given that the walk starts in state

x. The idea is to set up a recurrence relation for the rx by conditioning on the outcome

of the first step of the random walk: From its starting state x, the walk either moves to

x+ 1 and eventually gets absorbed in state a with probability rx+1, or it moves to x− 1

and eventually gets absorbed in state a with probability rx−1. This results in the system

of equations

rx = p rx+1 + q rx−1 for a < x < b (4.22)
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with boundary conditions ra = 1 and rb = 0. We then need to solve this system. Note

that we can rewrite (4.22) as

(p+ q)rx = p rx+1 + q rx−1

and so get

q(rx−1 − rx) = p(rx − rx+1) ,

rx − rx+1 =
q

p
(rx−1 − rx) ,

and by iteration,

rx − rx+1 = (
q

p
)x−a(ra − ra+1) .

Setting c = ra − ra+1 = 1− ra+1, we have

rx − rx+1 = c (
q

p
)x−a for a ≤ x < b .

So

rx = (rx − rx+1) + (rx+1 − rx+2) + · · ·+ (rb−1 − rb) = c
b−1∑
i=x

(
q

p
)i−a ,

from which we get for a ≤ x < b,

rx = c
b−1∑
i=x

(
q

p
)i−a = c (

q

p
)x−a

b−x−1∑
j=0

(
q

p
)j

= c (
q

p
)x−a

1− ( q
p
)b−x

1− q
p

.

Setting ra = 1, we compute the constant c as

c =
1− q

p

1− ( q
p
)b−a

.

Altogether, we have proved the following result:

Proposition 4.4.3. Let 0 < p < 1, p 6= 1
2
, and q = 1−p. For simple biased random

walk with P(Xk = 1) = p and P(Xk = −1) = q, we have

Px(T a < T b) = rx =
( q
p
)x−a − ( q

p
)b−a

1− ( q
p
)b−a

for a ≤ x < b , (4.23)

and

Px(T b < T a) = 1− rx =
1− ( q

p
)x−a

1− ( q
p
)b−a

for a ≤ x < b . (4.24)
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Notes: (1) In Section 6.6.2, we will compute the absorption probabilities (4.23) and

(4.24) in an alternate way using martingale techniques.

(2) Formulas (4.23) and (4.24) for the absorption probabilities remain the same, if the

biased random walk has positive holding probability h. That is, if P(Xk = 0) = h,

P(Xk = 1) = p, and P(Xk = −1) = q with h, p, q > 0, p 6= q, and h+ p+ q = 1. This can

be seen by modifying the system of equations (4.22) accordingly and by solving the system.

Intuitively, absorption probabilities only depend on the evolution of the trajectories as

far as their changes in locations over time are concerned. However, a positive holding

probability will have an effect on the expected duration until absorption (see Proposition

4.4.4 below). The same was true for symmetric random walk (see Remark 4.4.2).

Now that we have computed the absorption probabilities rx and 1 − rx, we can use

Wald’s first equation to compute the expected time until absorption Ex(T ). We have

E(Xk) = p− q. And we compute

Ex(ST ) = a(1−
1− ( q

p
)x−a

1− ( q
p
)b−a

) + b
1− ( q

p
)x−a

1− ( q
p
)b−a

= a+ (b− a)
1− ( q

p
)x−a

1− ( q
p
)b−a

.

Thus, by Theorem 4.3.1(a), we get the following result for simple biased random walk

(with or without positive holding probability):

Proposition 4.4.4. Consider simple biased random walk with P(Xk = 0) = h,

P(Xk = 1) = p, and P(Xk = −1) = q. Assuming h ≥ 0, p, q > 0, p 6= q, and

h+ p+ q = 1, we have

Ex(T ) =
a− x
p− q

+

(
b− a
p− q

)
1− ( q

p
)x−a

1− ( q
p
)b−a

. (4.25)

Example 4.4.2. Again, we consider the case of the compulsive gambler who plays against

an infinitely rich adversary. Here the individual bets are assumed to be not fair. The

limits stated in (4.20) and (4.21) are also valid for biased random walk, and so (4.23)

yields

Px(T 0 <∞) = lim
b→∞

( q
p
)x − ( q

p
)b

1− ( q
p
)b

=

{
1 for q > p

( q
p
)x < 1 for q < p .

For the case q > p, for which bancruptcy of the gambler will occur with probability 1, we
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get from (4.25) for the expected time until bancruptcy,

Ex(T 0) = lim
b→∞

[
−x
p− q

+

(
b

p− q

)
1− ( q

p
)x

1− ( q
p
)b

]
=

x

q − p
.

The distribution of T 0 can be computed using the result from Corollary 4.5.9. �

4.5 Reflection Principle and Duality

In order to compute probabilities for simple symmetric random walk (Sn)n≥0 on Z, we

often need to count paths of a fixed length and with specific properties. Towards this

end, it is often helpful to apply to paths simple geometric operations, such as reflection,

rotation, or cutting and pasting, which can establish a one-to-one correspondence between

the paths in a set of interest and the paths in a set that is easier to count or understand.

In this spirit, two approaches have proven to be particularly useful. They are reflection

and time-reversal of paths. First, we will first discuss the Reflection Principle. It is

based on a one-to-one correspondence of paths via the reflection of certain portions of a

path across a horizontal line.

4.5.1 The Reflection Principle

Let a ∈ Z. Recall that T a denotes the first hitting time of the random walk, that is,

T a = min{n ≥ 1 : Sn = a}.

Lemma 4.5.1 (Reflection Principle). Let (Sn)n≥0 be simple symmetric random walk

on Z.

(a) Reflecting the portion of the trajectory between times T a and n:

Assume S0 = 0 and a, k ≥ 1. Then

P(Sn = a+ k) = P(Sn = a− k, T a ≤ n) .

(b) Reflecting the portion of the trajectory between times 0 and T 0: As-

sume c, b > 0. Then

P(Sn = c |S0 = −b) = P(Sn = c, T 0 ≤ n |S0 = b) .

Proof. (a) Fix n ≥ 1. For simple symmetric random walk, any n-length path ωn occurs

with the same probability 1
2n

. Any ωn ∈ {Sn = a + k} must have visited a at a time

prior to n. Consider T a = T a(ωn) and reflect the portion of ωn between times T a and n
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about the horizontal line y = a (see Figure 4.7). In this way, we establish a one-to-one

correspondence between n-length paths ending in a + k and paths that first visit a at a

time prior to n and end up in a− k.

a+ k

a− k

a

1 2 3
0

T a timen

(a)

Figure 4.7

(b) An analogous one-to-one correspondence of n-length paths, using reflection of the

portion of ωn between times 0 and T 0 about the horizontal line y = 0, establishes the

second part of the lemma (see Figure 4.8).

c

b

0
1 2 3

−b
T 0

timen
(b)

Figure 4.8

As a first application of the Reflection Principle, we compute the distribution of the first

hitting time T a.
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Proposition 4.5.2. Let (Sn)n≥0 be simple symmetric random walk starting at 0

and a ∈ Z+. Then

P(T a ≤ n) = 2P(Sn > a) + P(Sn = a)

= P(Sn /∈ [−a, a− 1]) .

By symmetry, we have P(T a ≤ n) = P(T−a ≤ n).

Proof. We have

P(T a ≤ n) =
∑
b∈Z

P(Sn = b, T a ≤ n)

=
∑
b≥a

P(Sn = b) +
∑
b<a

P(Sn = b, T a ≤ n)

= P(Sn ≥ a) + P(Sn > a)

= P(Sn /∈ [−a, a− 1])

where the second term in the third equality is a consequence of the Reflection Principle.

Corollary 4.5.3. Let (Sn)n≥0 be simple symmetric random walk starting at 0. For

n ≥ 1, we have

(a) P(T 0 > 2n) = P 2n
00

(b) P(S1 6= 0, S2 6= 0, ..., S2n 6= 0) = P 2n
00

(c) P(S1 > 0, S2 > 0, ..., S2n > 0) = 1
2
P 2n

00

(d) P(S1 ≥ 0, S2 ≥ 0, ..., S2n ≥ 0) = P 2n
00 .

By symmetry, equalities (c) and (d) also hold if we reverse all inequality signs in

the probabilities on the left-hand side.
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Proof. (a)-(c): We have

P(T 0 > 2n) = P(S1 6= 0, S2 6= 0, ..., S2n 6= 0)

= 2P(S1 > 0, S2 > 0, ..., S2n > 0)

= 2P(S2 > 0, ..., S2n > 0 |S1 = 1)1
2

= P(S1 > −1, ..., S2n−1 > −1 |S0 = 0)

= P(S1 < 1, ..., S2n−1 < 1 |S0 = 0)

= P(T 1 > 2n− 1) = P(S2n−1 ∈ {−1, 0}) = P(S2n−1 = −1) .

Note that P(S2n−1 = −1) =
(

2n−1
n

)
1

22n−1 =
(

2n
n

)
1

2n
= P(S2n = 0), which is due to the

identity 2
(

2n−1
n

)
=
(

2n
n

)
. Thus

P(T 0 > 2n) = P(S1 6= 0, S2 6= 0, ..., S2n 6= 0) = 2P(S1 > 0, S2 > 0, ..., S2n > 0) = P 2n
00 .

To prove (d), note that

P(S1 > 0, S2 > 0, ..., S2n > 0) = P(S1 = 1)P(S2 > 0, ..., S2n > 0 |S1 = 1)

= 1
2
P(S1 ≥ 0, ..., S2n−1 ≥ 0) .

Since 2n− 1 is odd, we have P(S2n ≥ 0 |S2n−1 ≥ 0) = 1, and thus

P(S1 ≥ 0, ..., S2n−1 ≥ 0) = P(S1 ≥ 0, ..., S2n ≥ 0) .

It follows that

P(S1 ≥ 0, ..., S2n ≥ 0) = 2P(S1 > 0, S2 > 0, ..., S2n > 0) = P 2n
00 ,

which completes the proof.

Corollary 4.5.4. Let (Sn)n≥0 be simple symmetric random walk starting at 0. Then

for n ≥ 1,

P(T 0 = 2n) = P 2n−2
00 − P 2n

00

=
1

2n− 1
P 2n

00

=
1

2n
P 2n−2

00 .
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Proof. Note that the event of first return to 0 at time 2n is

{S2 6= 0, ..., S2n−2 6= 0, S2n = 0} = {S2 6= 0, ..., S2n−2 6= 0}\{S2 6= 0, ..., S2n−2 6= 0, S2n 6= 0} .

Since {S2 6= 0, ..., S2n−2 6= 0, S2n 6= 0} ⊂ {S2 6= 0, ..., S2n−2 6= 0}, by Corollary 4.5.3,

P(T 0 = 2n) = P 2n−2
00 − P 2n

00 .

A straightforward calculation yields

P 2n−2
00 =

(
2n− 2

n− 1

)
1

22n−2
=

4n2

(2n− 1)2n

(
2n

n

)
1

22n
=

2n

2n− 1
P 2n

00 ,

and so

P(T 0 = 2n) = P 2n−2
00 − P 2n

00 = (
2n

2n− 1
− 1)P 2n

00 =
1

2n− 1
P 2n

00 .

Equivalently, since

P 2n
00 =

2n− 1

2n
P 2n−2

00 ,

we get

P(T 0 = 2n) =
1

2n
P 2n−2

00 .

Corollary 4.5.5. Simple symmetric random walk on Z is null recurrent.

Proof. The probability that the random walk returns to 0 in finite time is

P(T 0 <∞) =
∞∑
n=1

P(T 0 = 2n) =
∞∑
n=1

(P 2n−2
00 − P 2n

00 ) = lim
n→∞

(1− P 2n
00 ) = 1 ,

and so simple symmetric random walk on Z is recurrent. For the expectation E(T 0), we

have

E(T 0) =
∞∑
m≥1

P(T 0 ≥ m) = 2 + 2
∞∑
n=1

P 2n
00 =∞ .

The last equality follows since
∑∞

n=1 P
2n
00 is the expected number of returns to 0, which

is infinite by the recurrence of the random walk (see Proposition 2.1.3). It follows that

simple symmetric random walk on Z is null recurrent.
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4.5.2 The ballot problem

Consider the following question which is known as the ballot problem: In an election

between two candidates, Candidate 1 receives c votes and Candidate 2 receives d votes,

with c > d. What is the probability that throughout the election, Candidate 1 was always

ahead of Candidate 2? The answer to this question is stated in Corollary 4.5.7 below.

Consider simple (symmetric or biased) random walk (Sn)n≥0 on Z. We will use the

following notation:

Nn(a, b) = “number of paths of length n that start at a and end at b”

Ñn(a, b) = “number of paths of length n that start at a and end at b for which Sk 6= 0 for

0 < k < n”

Proposition 4.5.6. Consider simple random walk on Z. Let b ∈ Z+. We have

Ñn(0, b) =
b

n
Nn(0, b) .

Proof. Any such path must take its first step to 1. So

Ñn(0, b) = Ñn−1(1, b) .

By the Reflection Principle Part (b), the number of paths of length n− 1 that start at 1

and end at b and for which Sk = 0 for some 0 < k < n is equal to Nn−1(−1, b). Thus

Ñn−1(1, b) = Nn−1(1, b)−Nn−1(−1, b).

We have

Nn−1(1, b)−Nn−1(−1, b) =

(
n− 1
n+b−2

2

)
−
(
n− 1
n+b

2

)
=

(
n− 1

k − 1

)
−
(
n− 1

k

)
where we have set k = n+b

2
. We compute(

n− 1

k − 1

)
−
(
n− 1

k

)
=

[k(n− 1) · · · (n− k + 1)]− [(n− 1) · · · (n− k)]

k!

=
(2k − n)(n− 1) · · · (n− k + 1)

k!
=
c

n

n(n− 1) · · · (n− k + 1)

k!

=
b

n

(
n

k

)
=
b

n

(
n
n+b

2

)
=
b

n
Nn(0, b) .
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Corollary 4.5.7 (Ballot problem). Let c > d > 0. Consider an election between

two candidates, Candidate 1 and Candidate 2, in which Candidate 1 receives c votes

and Candidate 2 receives d votes. The probability that, throughout the election,

Candidate 1 was always ahead of Candidate 2 is

c− d
c+ d

. (4.26)

Proof. A number of c+d votes were cast. The election process can be modeled as a simple

random walk of length c+ d for which we set Xk = 1 if Candidate 1 receives the kth vote

that was cast, and Xk = −1 if Candidate 2 receives the kth vote that was cast. We have

Sc+d = c− d > 0 .

The event “Candidate 1 is ahead of Candidate 2 throughout the election” is the same as

the event {Sk > 0 : 0 < k < c+ d}. It follows that the probability that Candidate 1 was

always ahead of Candidate 2 is

Ñc+d(0, c− d)

Nc+d(0, c− d)
=

c− d
c+ d

.

For an alternate proof of (4.26) that uses martingale theory, see Exercise 6.11.

We have a second immediate corollary to Proposition 4.5.6:

Corollary 4.5.8. Let (Sn)n≥0 be simple (symmetric or biased) random walk starting

at 0. Let b ∈ Z, b 6= 0. Then

P(S1 6= 0, ..., Sn−1 6= 0, Sn = b) =
|b|
n
P(Sn = b) .

4.5.3 Dual walks

Another useful concept for computations is the concept of duality which results from time

reversal of paths. Let (Sn)n≥0 be simple (symmetric or biased) random walk starting at

0, and recall that Sn =
∑n

k=1 Xk for n ≥ 1. Since the random variables X1, X2, ... are

i.i.d., the distributions of the random vectors (X1, ..., Xn) and (Xn, ..., X1) are the same.

We will use this fact to construct a new walk. We define

X∗1 = Xn, X
∗
2 = Xn−1, ..., X

∗
n = X1 .
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From this we define the dual walk S∗n of length n by

S∗k =
k∑
i=1

X∗i

for k = 1, ..., n and S∗0 = 0. Figure 4.9 shows an n-length sample path ωn for (Sk)k≥0 and

its corresponding dual path ω∗n for (S∗k)0≤k≤n .

b

n−n

ωn rotated by 180◦

ω∗n

ωn

Figure 4.9

Figure 4.10 (with the same sample path ωn as in Figure 4.9) is an illustration of the fact

(ω∗n)∗ = ωn.

b

n−n

ω∗n rotated by 180◦

ω∗n

(ω∗n)∗ = ωn

Figure 4.10



4.5. REFLECTION PRINCIPLE AND DUALITY 144

The paths ωn and ω∗n start and end at the same points. We get ω∗n by letting time “run

backwards”. Geometrically, this is accomplished by rotating ωn by 180◦ about the origin

(which accomplishes the time reversal) and then translating the resulting path so that its

starting point coincides with the origin.

Since (ω∗n)∗ = ωn, there is a one-to-one correspondence between n-length paths ωn for

(Sk)0≤k≤n and n-length paths ω∗n for (S∗k)0≤k≤n. We also have P(ωn) = P(ω∗n), no matter

whether the random walk is symmetric or biased. Hence any event E for (Sk)0≤k≤n has a

corresponding dual event E∗ for (S∗k)0≤k≤n and P(E) = P(E∗). Applying duality, we get

the following corollary to Corollary 4.5.8.

Corollary 4.5.9. Let (Sn)n≥0 be simple (symmetric or biased) random walk starting

at 0. Let b ∈ Z, b 6= 0. Then

P(T b = n) =
|b|
n
P(Sn = b) . (4.27)

Proof. Let ωn be an n-length path of the event {S1 6= 0, ..., Sn−1 6= 0, Sn = b}. Its dual

path ω∗n is an element of the event {S∗1 6= b, ..., S∗n−1 6= b, S∗n = b}. There is a one-to-one

correspondence between such paths ωn and ω∗n. Since P(ωn) = P(ω∗n), we have

P(S1 6= 0, ..., Sn−1 6= 0, Sn = b) = P(S∗1 6= b, ..., S∗n−1 6= b, S∗n = b) .

But P(S∗1 6= b, ..., S∗n−1 6= b, S∗n = b) = P(T b = n), and so by Corollary 4.5.8, we get

P(T b = n) =
|b|
n
P(Sn = b) .

As an interesting consequence for the case of simple symmetric random walk, we get the

following result for the expected number of visits to a state b 6= 0, before the walk returns

to its starting point 0 for the first time.

Proposition 4.5.10. Let (Sn)n≥0 be simple symmetric random walk starting at 0.

Let b ∈ Z, b 6= 0. Consider the random variable V b
T 0 = “number of visits to state b

before the first return to 0”. Then

E(V b
T 0) = 1 .
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Proof. Because of symmetry, it suffices to consider the case b > 0. Consider the events

An(b) = {S1 > 0, ..., Sn−1 > 0, Sn = b}. The random variable V b
T 0 can be written as

V b
T 0 =

∞∑
n=1

1An(b) .

By the Monotone Convergence theorem (Theorem C.3.1), we have

E(V b
T 0) =

∞∑
n=1

E(1An(b)) .

Since E(1An(b)) = P(An(b)) = P(T b = n), we get

E(V b
T 0) =

∞∑
n=1

P(T b = n)

= P(T b <∞) = 1

since simple symmetric random walk on Z is recurrent.

Remark 4.5.11. By Corollary 4.5.5 (and from earlier results), we know that simple

symmetric random walk on Z is recurrent. By Theorems 2.2.4 and 2.2.6, we know

that there exists, up to a multiplicative constant, a unique invariant measure µ

for simple symmetric random walk on Z. This invariant measure µ is given by

µ(b) = E(V b
T 0) for b ∈ Z. Clearly, the constant measure λ = c (for any positive

constant c) is an invariant measure for simple symmetric random walk, hence the

only invariant measure, up to a multiplicative constant. It follows that there exists

a constant c0 > 0 such that

E(V b
T 0) = c0 for all b ∈ Z .

Proposition 4.5.10 tells us that c0 = 1.

4.5.4 Maximum and minimum

Often times, one is interested in the extreme values a random walk attains, either by a

fixed time n or in the long run.

Maximum (or minimum) attained by time n:
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Here we compute the distribution of the maximum value that simple symmetric ran-

dom walk attains by time n. An analogous result for the minimum can be deduced by

symmetry. We define the random variable

Mn = max{Sk : 1 ≤ k ≤ n} .

Clearly, Mn ≥ Sn. Assuming the random walk starts at 0, we have Mn ≥ 0.

Proposition 4.5.12. Let (Sn)n≥0 be simple symmetric random walk starting at 0

and Mn the maximum the walk attains by time n. Then

P(Mn ≥ a) = P(Sn /∈ [−a, a− 1]) ,

and

P(Mn = a) = max(P(Sn = a), P(Sn = a+ 1)) .

Proof. Because of the equality of the events

{Mn ≥ a} = {T a ≤ n} ,

we have by Proposition 4.5.2,

P(Mn ≥ a) = P(Sn /∈ [−a, a− 1]) .

Note that P(Mn = a) = P(Mn ≥ a)− P(Mn ≥ a+ 1). Thus we get

P(Mn = a) = P(Sn = −a− 1) + P(Sn = a) = max(P(Sn = a+ 1), P(Sn = a)) .

The conclusion follows from symmetry and from the fact that either P(Sn = a + 1) = 0

or P(Sn = a) = 0.

The distribution of Mn for simple biased random walk involves more complicated expres-

sions. For a reference see [17].

Maximum (or minimum) attained in the long run:

Recall that simple symmetric random walk on Z is recurrent, and therefore the random

walk visits every state in Z infinitely often with probability 1. There is no maximum or

minimum in the long run. For this reason we only consider biased simple random walk.

Assume q > p. The random walk is transient and has negative drift. By the Strong Law

of Large Numbers, we have

lim
n→∞

Sn = −∞ with probability 1 ,
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and so there is no global minimum. Let

M = max{Sn : n ≥ 0}

be the maximum random variable.

Proposition 4.5.13. Let (Sn)n≥0 be simple, biased random walk starting at 0 with

q > p and let M be the maximum random variable. Then M has a geometric

distribution with parameter (1− p
q
), that is,

P(M = k) = (1− p

q
)(
p

q
)k for k ≥ 0 , (4.28)

and the expected long-run maximum is

E(M) =
p

q − p
.

Proof. We have P(M ≥ 0) = 1. For k ≥ 1,

P(M ≥ k) = P(T k <∞) .

Recall the gambler’s ruin formula (4.5.9) for p 6= q. For k ≥ 1, we use the formula to

compute

P(T k <∞) = lim
a→−∞

P(T k < T a) = lim
a→−∞

1− ( q
p
)−a

1− ( q
p
)k−a

= (
p

q
)k ,

which yields

P(M = k) = (
p

q
)k − (

p

q
)k+1 = (1− p

q
)(
p

q
)k .

For k = 0, we have

P(M = 0) = P(Sn ≤ 0 for all n ≥ 0) = 1− P(M ≥ 1) = 1− p

q
> 0

This establishes (4.28) and consequently,

E(M) =
p

q − p
.
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4.6 Arcsine Law

4.6.1 Last returns to Zero

Consider simple symmetric random walk (Sn)n≥0 starting at 0. While in the previous

section we were concerned with first hitting times of states, we now ask the question of

what is the last return time to state 0 up to a fixed time 2n. In a fair game of coin tossing

of fixed length 2n, this will be the last time the two players have equal fortunes before

one of the two players takes the lead and remains in the lead until the end of the game.

We introduce the random variable

Y2n = max{2k ≤ 2n : S2k = 0},

that is, the last hitting time of state 0 up to (including) time 2n. See Figure 4.11 for an

illustration.

0
1 2 3 Y2n 2n

Figure 4.11

Figure 4.12 shows a histogram of 40, 000 repetitions of a simulation of the time of last

visit to 0 for simple symmetric random walk of length 2n = 1000. (The simulation was

produced with the statistical software package R.) It is noteworthy that the distribution

of the random variable Y2n (in the above simulation, Y1000) seems to be symmetric about

the midpoint time n and has rather large spikes near the endpoints (near time 0 and

time 2n) of the time interval. The following proposition gives a precise formula for the

distribution of Y2n.

Proposition 4.6.1. Let (Sn)n≥0 be simple symmetric random walk starting at 0.

Then for all 0 ≤ k ≤ n, we have

P(Y2n = 2k) = P 2k
00 P

2n−2k
00 .
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Figure 4.12

Proof. We have

P(Y2n = 2k) = P(S2k = 0, S2k+1 6= 0, ..., S2n 6= 0)

= P(S2k = 0)P(S2k+1 6= 0, ..., S2n 6= 0 |S2k = 0)

= P(S2k = 0)P(S1 6= 0, ..., S2n−2k 6= 0)

= P(S2k = 0)P(S2n−2k = 0)

= P 2k
00 P

2n−2k
00

where the next to last equality follows from Corollary 4.5.3.

For fixed n, the distribution of Y2n is called the discrete arcsine distribution. It is

defined by

P(Y2n = 2k) =

(
2k

k

)(
2n− 2k

n− k

)
1

22n
for k = 0, 1, ..., n ,

and zero otherwise.

Here is the reason for the name discrete arcsine distribution. Recall from Section 4.2 that

for large m,

P 2m
00 ≈

1√
πm

.

Thus for large n and values k that are neither close to 0 nor close to n, we have

P(Y2n = 2k) ≈ 1

π
√
k(n− k)

=
1

nπ
· 1√

k
n
(1− k

n
)
.
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Set x = k
n

and consider the function f(s) =
1

π
√
s(1− s)

on the interval (0, 1). Then

P(Y2n ≤ 2k) =
nx∑
i=0

P(Y2n = 2i) ≈
∫ x

0

f(s) ds =
2

π
arcsin

√
x .

For an illustration, see Figure 4.13. It shows the appropriately rescaled histogram from

Figure 4.12 and overlayed arcsine density. The result may appear counterintuitive. One

Figure 4.13

would perhaps expect that for a fair game, equalizations occur fairly evenly distributed

in the course of the game. However, the arcsine law for the time of last equalization tells

us that with high probability, a gambler either takes the lead early on in the game (and

remains in lead until the end) or takes the lead close towards the end of the game. With

probability 1
2

the winner of the game is determined during the first half of the game.

4.6.2 How often in the lead?

Next, we look into the distribution of a special occupancy time for simple symmetric

random walk. For fixed n, we are interested in the distribution of the number of time

intervals between time 0 and time 2n during which the line segment of the trajectory of

the random walk lies above the x-axis. Applied to a fair game of coin tossing of length 2n

for two players, the question is, what is the distribution of the number of time intervals

during which Player 1 (say) is in the lead?
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We say the time interval (m,m + 1) is a positive time interval for the random walk if

Sm > 0 or Sm+1 > 0. Consider the random variable L2n= “number of positive time

intervals between 0 and 2n”. For an illustration see Figure 4.14. As Proposition 4.6.2 will

show, the random variable L2n has a discrete ascsine distribution. In fact, we will show

that L2n ∼ Y2n.

0
1 2 3

Here L2n = 12

2n

Figure 4.14

Proposition 4.6.2. Let (Sn)n≥0 be simple symmetric random walk starting at 0.

Then for all 0 ≤ k ≤ n, we have

P(L2n = 2k) = P 2k
00 P

2n−2k
00 .

Proof. To simplify our writing, we will use the notation `2n(2k) = P(L2n = 2k). By

Corollary 4.5.3,

`2n(2n) = P 2n
00 = P 2n

00 P
0
00 ,

and by symmetry,

`2n(0) = P(S1 ≤ 0, ..., S2n ≤ 0) = P 2n
00 P

0
00 .

This shows that the statement holds for k = 0 and k = n.

Now assume 1 ≤ k ≤ n − 1. With this assumption on k, there must exist a time t with

1 ≤ t ≤ n− 1 such that S2t = 0. Consider the first time T 0 the random walk returns to 0.

Note that there is equal probability that all time intervals between 0 and T 0 are positive

and that all time intervals between 0 and T 0 are negative. We can condition on T 0 and,

with the use of the strong Markov property, get

`2n(2k) =
n−1∑
t=1

P(T 0 = 2t)P(L2n = 2k |T 0 = 2t)

=
n−1∑
t=1

P(T 0 = 2t)
1

2
`2n−2t(2k) +

n−1∑
t=1

P(T 0 = 2t)
1

2
`2n−2t(2k − 2t) .
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Observe that in the above expression we need to set `m(s) = 0 if s > m or if s < 0. This

reduces the two summations in the last expression, and we get

`2n(2k) =
1

2

n−k∑
t=1

P(T 0 = 2t)`2n−2t(2k) +
1

2

k∑
t=1

P(T 0 = 2t)`2n−2t(2k − 2t) .

We will now prove the statement `2n(2k) = P 2k
00 P

2n−2k
00 by induction on n. Clearly, the

statement holds for n = 1. Assume the statement holds for m < n. Then

`2n(2k) =
1

2

n−k∑
t=1

P(T 0 = 2t)`2n−2t(2k) +
1

2

k∑
t=1

P(T 0 = 2t)`2n−2t(2k − 2t)

=
1

2

n−k∑
t=1

P(T 0 = 2t)P 2k
00 P

2n−2t−2k
00 +

1

2

k∑
t=1

P(T 0 = 2t)P 2k−2t
00 P 2n−2k

00

=
1

2
P 2k

00

n−k∑
t=1

P(T 0 = 2t)P 2n−2t−2k
00 +

1

2
P 2n−2k

00

k∑
t=1

P(T 0 = 2t)P 2k−2t
00

=
1

2
P 2k

00 P
2n−2k
00 +

1

2
P 2n−2k

00 P 2k
00

= P 2k
00 P

2n−2k
00 .

This completes the proof.

Example 4.6.1. Compute the probability that in an infinite sequence of independent

fair coin tosses, heads is in the lead at least 80% of the time.

Answer: For large n,

P(L2n ≥ (0.8)2n) = (1− P(L2n < (0.8)2n)) ≈ 1− 2

π
arcsin

√
0.8 = 0.295 .

Hence

lim
n→∞

P(L2n ≥ (0.8)2n) = 0.295 .

�

4.7 The Range of a Random Walk

Definition 4.7.1. Let (Sn)n≥0 be random walk on Z. The range Rn at time n is

the random variable

Rn = card{S0, S1, ..., Sn} .
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The range Rn is the number of distinct points the random walk has visited by time n.

Clearly, 1 ≤ Rn ≤ (n+ 1). For simple random walk on Z starting at 0,

{S0, S1, ..., Sn} = {−a,−a+ 1, ..., 0, ..., b− 1, b}

for some integers a and b with 0 ≤ a, b ≤ n.

The time until a random walk visits the nth new state:

We define the following sequence T (n) of random times. T (n) is the time at which the

random walk visits its nth new (i.e., up to time T n)−1 unvisited) state. So RT (n)−1 = n−1

and RT (n) = n. Note that the times T (n) are stopping times for the random walk. Simple

random walk reaches a new extreme value at time T (n). Also note that T (1) ≡ 0 and

T (2) ≡ 1.

Example 4.7.1. Consider simple symmetric random walk on Z and the following finite-

length sample path ω10:

ω10 = (0, 1, 0,−1,−2,−1, 0, 1, 2, 1, 2) .

Here R10(ω) = 5 and T (1)(ω) = 0, T (2)(ω) = 1, T (3)(ω) = 3, T (4)(ω) = 4, T (5)(ω) = 8 for

any sample path ω that matches the given ω10 up to time 10. �

Proposition 4.7.1. Let (Sn)n≥0 be simple symmetric random walk (with any start-

ing point). Then

E(T (n)) =
1

2
n(n− 1) .

Proof. Because of translation invariance of the transition probabilities, we can assume

the walk starts at 0. Let a and b be two positive integers. We will make repeated use of

formula (4.19) for the expected duration of the game in the gambler’s ruin problem. If

the gambler starts with 0 dollars, the expected time until the gambler either reaches a

fortune of b or has incurred a loss of a is E(T {−a,b}) = ab. By time T (i), the random walk

has visited exactly i distinct, consecutive integers, and ST (i) is either the smallest integer

or the largest integer of this set. Assume the walk is at the largest integer at time T (i).

Then the expected time until the walk visits the next new state, that is, E(T (i+1) − T (i))

is the same as E(T {−i,1}) in the gambler’s ruin problem. Similarly, if at time T (i) the walk

is at the smallest integer, then then E(T (i+1) − T (i)) = E(T {−1,i}). Either way we get

E(T (i+1) − T (i)) = i ,
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and from this,

E(T (n)) = E(T (1)) +
n−1∑
i=1

E(T (i+1) − T (i))

= 0 + 1 + 2 + · · ·+ (n− 1) =
1

2
n(n− 1) .

E(Rn) and asymptotic results for Rn:

The following results more broadly apply to random walks on Zd for d ≥ 1, not only to

simple random walk.

Theorem 4.7.2. Consider random walk (Sn)n≥0 on Zd with S0 = 0 and Sn =∑n
k=1Xk, n ≥ 1, for i.i.d. random variables Xk taking values in Zd. Let T 0 be the

first return time to 0. Then

E(Rn) =
n∑
k=0

P(T 0 > k) (4.29)

and

lim
n→∞

E(Rn)

n
= P(no return to 0) . (4.30)

Proof. Consider the events Ek = {Sk 6= Si : 0 ≤ i ≤ k − 1} for k ≥ 1 and their

corresponding indicator random variables

1Ek =

{
1 if Sk 6= Si for all i = 0, 1, ..., k − 1

0 otherwise .

Then

Rn =
n∑
k=0

1Ek

and

E(Rn) =
n∑
k=0

P(Ek) .

We compute

P(Ek) = P(Sk − Sk−1 6= 0, Sk − Sk−2 6= 0, ..., Sk 6= 0)

= P(Xk 6= 0, Xk +Xk−1 6= 0, ..., Xk +Xk−1 + · · ·+X1 6= 0)

= P(X1 6= 0, X1 +X2 6= 0, ..., X1 +X2 + · · ·+Xk 6= 0)

= P(T 0 > k) .
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It follows that

E(Rn) =
n∑
k=0

P(T 0 > k) .

We have

lim
k→∞

P(T 0 > k) = P(T 0 =∞) = P(no return to 0) .

Hence

lim
k→∞

P(Ek) = P(no return to 0) ,

and as a consequence, the sequence of Césaro averages
1

n

n∑
k=0

P(Ek) =
E(Rn)

n
converges

to the same limit. It follows that

lim
n→∞

E(Rn)

n
= P(no return to 0)

which completes the proof.

In 1964, Kesten, Spitzer, and Whitman proved an analogous result to (4.30) for almost

sure convergence:

Theorem 4.7.3 (Kesten–Spitzer–Whitman). Consider a random walk (Sn)n≥0 on

Zd with S0 = 0 and Sn =
∑n

k=1 Xk, n ≥ 1, with i.i.d. random variables Xk. Then

lim
n→∞

Rn

n
= P(no return to 0) with probability 1 .

The proof of Theorem 4.7.3 involves material beyond the scope of this text and is omitted.

For a reference see [34]. Note that it follows from Theorem 4.7.3 that the range of a

random walk on Zd grows sub-linearly with probability 1 if and only if the

random walk is recurrent.

The following corollary to Theorem 4.7.3 applies to random walk on Z in one dimension:

Corollary 4.7.4. Let (Sn)n≥0 be an irreducible random walk on Z with S0 = 0 and

Sn =
∑n

k=1Xk, n ≥ 1, with i.i.d. random variables Xk. If E(Xk) = 0, then the

random walk is recurrent.

Proof. By the Strong Law of Large Numbers,

lim
n→∞

Sn
n

= 0 with probability 1 .
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Hence for a fixed ε > 0, there is a random variable N such that

|Sn|
n

< ε for n > N with probability 1 .

In other words, for almost all sample paths ω, all but finitely many of the values Sn(ω)
n

,

n ≥ 1, lie in the interval (−ε, ε). For such a sample path ω we have

|Sn(ω)| < nε for all n > N(ω) (4.31)

and possibly

|Sn(ω)| ≥ nε for some n with 1 ≤ n ≤ N(ω) .

As a consequence,

Rn(ω) ≤ 2nε+N(ω) for all n > N(ω) .

and

lim
n→∞

Rn(ω)

n
≤ 2ε .

Since ε is arbitrarily small, we conclude

lim
n→∞

Rn(ω)

n
= 0 . (4.32)

Since (4.31) and the subsequent discussion throughout (4.32) hold for all sample paths ω

in a set of probability 1, we have

lim
n→∞

Rn

n
= 0 with probability 1 .

By Theorem 4.7.3, the return probability P(T 0 <∞) is 1, and so the irreducible random

walk is recurrent.

4.8 Law of the Iterated Logarithm

Here we are interested in the asymptotic growth rate of the location of simple symmet-

ric random walk (Sn)n≥0 as as n→∞. What can we say about the size of the excursions

the walk takes (away from its mean 0) in the long run? So far we know that by the Strong

Law of Large Numbers (SLLN), with probability 1,

Sn
n

n→∞−−−−→ 0 . (4.33)

However, the denominator n in (4.33) is too large to give us precise information about

the size of fluctuations of Sn, it “overpowers” the numerator Sn.
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The Central Limit Theorem improves the information we get from the SLLN. It states

Sn√
n

n→∞−−−−→ N(0, 1) (4.34)

in distribution. A normal random variable, with high probability, takes values within three

standard deviations from its mean. So for large n, with high probability, the location of

the random walk Sn will lie in the interval [−3
√
n, 3
√
n] (recall (4.1) and the surrounding

discussion). But there will also be large but rare fluctuations outside this interval. One

shows (we omit the proof) that (4.34) implies

lim sup
n→∞

Sn√
n

=∞ and lim inf
n→∞

Sn√
n

= −∞ . (4.35)

We see from (4.35) that the denominator
√
n is too small to give us any details about the

size of such fluctuations.

Theorem 4.8.1 below, which is known as the Law of the Iterated Logarithm, settles

the question. Its statement involves a denominator that lies between
√
n and n and is

“exactly right” for giving information about the long-term fluctuations of the random

walk. The theorem is due to Khinchine1. Its proof is beyond the scope of this text (for a

reference see [21]). Note that the Law of the Iterated Logarithm applies quite generally.

It applies to any random walk whose step distribution has mean 0 and variance 1.

Theorem 4.8.1 (Law of the Iterated Logarithm). Let (Sn)n≥0 be a random walk

where Sn =
∑n

k=1Xk and X1, X2, ... are i.i.d. random variables with mean µ = 0

and variance σ2 = 1. Then

P
(

lim sup
n→∞

Sn√
2n log log n

= 1

)
= 1,

and furthermore (by applying the statement to −X1,−X2, ...),

P
(

lim inf
n→∞

Sn√
2n log log n

= −1

)
= 1.

Note that Theorem 4.8.1 says that with probability 1, for any ε > 0, there exist infinitely

many n such that

Sn > (1− ε)
√

2n log log n

and at most finitely many n such that

Sn > (1 + ε)
√

2n log log n .

1Aleksandr Khinchine (1894-1959), Russian mathematician.
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Also, correspondingly for negative fluctuations, there exist infinitely many n such that

Sn < (−1 + ε)
√

2n log log n

and at most finitely many n such that

Sn < (−1− ε)
√

2n log log n .

Exercises

Exercise 4.1. Consider simple symmetric random walk (Sn)≥0 on Z that starts at 0.

Show that for all n ≥ 1,

(a) P(S2n = 0) = P(S2n−1 = 1).

(b) P(S2n = 0) = max{P(S2n = a) : a ∈ Z} and

P(S2n−1 = 1) = max{P(S2n−1 = a) : a ∈ Z}.

Exercise 4.2. Consider simple symmetric random walk (Sn)≥0 on Z that starts at 0 and

let b < c. Show that for all n ≥ 1,

P(Sn ∈ [b, c]) ≤ (c− b+ 1)P(Sn ∈ {0, 1})

and conclude that for all finite intervals [b, c],

lim
n→∞

P(Sn ∈ [b, c]) = 0 .

Exercise 4.3. Consider simple (symmetric or biased) random walk on Z that starts at

0. Compute P(Sn ≤ 0 for all n ≥ 0), that is, the probability that the random walk never

visits a positive integer.

Exercise 4.4. A standard American roulette wheel has 38 slots numbered 1 − 36 and

0 and 00. The two slots labeled 0 and 00 are green, half of the numbers between 1 and

36 are black, and the other half of the numbers are red. The wheel is spun, and any of

the 38 numbers is equally likely to come up. You start with $50 and make a sequence of

bets on red. For each bet, if you win, you gain $1, and if you lose, you have to pay $1 to

the house. Your plan is to quit the game as soon as you either have reached a fortune of

$100 or have lost your entire initial fortune and are down to $0, whichever happens first.

What is the probability that you will quit the game with a fortune of $100?
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Exercise 4.5. Consider simple symmetric random walk (Xn)n≥0 on the integers {0, 1, ..., 5}
with partially reflecting boundary at the two endpoints 0 and 5. More precisely, we have

P0,1 = P0,0 = 1
2

and P5,4 = P5,5 = 1
2

and Px,x+1 = Px,x−1 = 1
2

for x = 2, 3, 4. Assume the

process starts in state 0. Compute E0(T 5). (Hint: View (Xn)n≥0 as a lumped version of

another process. Figure 1.14 may be helpful.)

Exercise 4.6. Consider simple random walk (Sn)n≥0 on Z that starts at 0.

(a) Show that for n ≥ 1, we have P(S1 6= 0, ..., Sn 6= 0) = 1
n
E(|Sn|).

(b) Assume (Sn)n≥0 is simple symmetric random walk and k ≥ 2 is even. Use part (a)

to show that the expect displacement E(|Sk|) of the walk from its starting point 0

is

E(|Sk|) = kP k
00 .

Exercise 4.7. Consider simple random walk (Sn)n≥0 on Z with Px,x+1 = p and Px,x−1 =

1 − p = q. Assume the walk starts at 0. Consider T 1, the first hitting time of State 1.

Show that for all n ≥ 1,

P(T 1 = 2n− 1) =
(2n− 2)!

n!(n− 1)!
pnqn−1 .

Exercise 4.8. Consider simple biased random walk (Sn)n≥0 on Z with Px,x+1 = p,

Px,x−1 = 1 − p = q, and p < q. Assume the walk starts at 0. Let c ∈ Z+ and con-

sider the first hitting time T c. Notice that here, since p < q, the event {T c = ∞} has

positive probability, and therefore E(T c) =∞. Prove that

E(T c |T c <∞) =
c

|p− q|
.

(Hint: The result from Exercise 4.15 may be useful.)

Exercise 4.9. Consider simple (symmetric or biased) random walk (Sn)n≥0 on Z that

starts at 0. Prove that

E(Sn |Sn+1) =
n

n+ 1
Sn+1 .

Exercise 4.10. Consider simple symmetric random walk (Sn)n≥0 on Z that starts at

0. Fix a time n > 0. The random variable Mn = max{Sk : 0 ≤ k ≤ n} gives the

maximum level the walk attains by time n. Consider two levels a and b with 0 < b < a

and n ≥ 2a− b. Use the Reflection Principle to show that

P(Mn ≥ a and Sn = b) = P(Sn = 2a− b).
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Exercise 4.11. Consider simple symmetric random walk (Sn)n≥0 on Z that starts at 0,

and for it the first hitting times T 3 and T 5. Let

pn = P(T 3 ≤ n and T 5 > n).

Compute pn for n ≥ 1.

Exercise 4.12. Consider simple symmetric random walk (Sn)n≥0 on Z that starts at 0,

and let Mn = max{Sk : 0 ≤ k ≤ n}. Compute

P(T 4 ≤ 6 and M6 < 6 |S2 = 2).

Exercise 4.13. Consider biased random walk on Z. At each time, the walk takes a

step according to a random variable Xk with P(Xk = 1) = 1
2
, P(Xk = −1) = 1

4
, and

P(Xk = 0) = 1
4
. Assume that the walk starts in state 2. Compute the probability P

{0,5}
2,2 ,

that is, the probability that the process returns to State 2 before it reaches either State

0 or State 5 for the first time.

Exercise 4.14. Consider simple symmetric random walk (Sn)n≥0 on Z starting at 0. Fix

n > 0 and define the random variable Z2n = min{2k ≤ 2n : S2k = S2n}. Find the

distribution of Z2n.

Exercise 4.15. Consider simple random walk (Sn)n≥0 on Z with Px,x+1 = p, Px,x−1 = q,

and Pxx = h with p + q + h = 1. The random walk starts at 0. The probability of no

return is P0(T 0 =∞). Prove that

P0(T 0 =∞) = |p− q| .

Exercise 4.16. Consider simple biased random walk (Sn)n≥0 on Z with Px,x+1 = p,

Px,x−1 = q, and Pxx = h with p + q + h = 1. Assume p > q. The random walk starts in

state 0. Let

M̃ = min{Sn : n ≥ 0} .

Compute E0(M̃).

Exercise 4.17. Two players, Player A and Player B, play against each other in a series

of fair $1 bets. Let C ∈ N. Each player starts with a fortune of $C, and the game ends

if either of the players has lost their $C.

(a) What is the expected number of returns to the initial state of the game (where each

player has a fortune of $C), before the game ends?

(b) What is the expected number of times Player A is ahead of Player B, before the

game ends?
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Exercise 4.18. Let (Sn)n≥0 be simple biased random walk on Z with S0 = 5, p = 1/4,

and q = 3/4. Let V y be the random variable “number of visits to state y”.

(a) Compute the probability that this random walk never visits 7.

(b) Compute P5(V 7 = 3). (c) Compute P5(V 2 = 3).

Exercise 4.19. Consider simple random walk (Sn)n≥0 on Z with an absorbing wall at 0.

That is, Px,x+1 = p and Px,x−1 = 1 − p = q for all integers x 6= 0, and P00 = 1. Assume

the walk starts at State c for some c > 0. We define the maximum random variable M by

M = max{Sn : n ≥ 0}.

For which values of c, p, q is E(M) finite, and for which values of c, p, q is E(M) infinite?



Chapter 5

Branching Processes

In this chapter we focus on the Galton-Watson branching process as a model for popu-

lation growth. The process is named after Frances Galton1 and Henry W. Watson2 who

introduced the model around 1875 to study the survival of family names in England. The

Galton-Watson branching process is a Markov chain (Xn)n≥0 on state space N0. The

random variables Xn, n ≥ 0, give the size of the population at time n (i.e., the size of

Generation n). At each time interval, each particle, independently of all other particles

and of any past, present, or future state of the system, splits into k particles or dies,

according to a fixed offspring distribution µ. See Figure 5.1 for an illustration. The

size of Generation 0 and the offspring distribution µ fully determine the evolution of the

process.

X0

X1

X2

X3

Figure 5.1: Branching process

Let Z be a random variable with distribution µ and taking values in N0. We assume Z

is a.s. finite, so P(Z < ∞) = 1. For x ≥ 1, the one-step transition probabilities for the

1Sir Frances Galton (1822-1911), English anthropologist and statistician, cousin of Charles Darwin.
2Henry William Watson (1827-1903), English mathematician.
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Galton-Watson branching process with offspring distribution µ are

Pxy = P(Xn+1 = y |Xn = x) = P(Z1 + · · ·+ Zx = y)

where Z1, ..., Zx are i.i.d. random variables with Z1 ∼ Z. Equivalently,

Pxy = µ∗x(y)

where µ∗x is the xth convolution power of µ. Note that 0 is an absorbing state for this

process.

The next section introduces generating functions which are a useful tool in the study of

branching processes.

5.1 Generating functions

Definition 5.1.1. Let Z be a random variable taking values in N0 with P(Z = k) =

µ(k) for k ≥ 0. The probability generating function fZ of Z is defined by

fZ(t) = E(tZ) =
∞∑
k=0

µ(k)tk for − 1 ≤ t ≤ 1 . (5.1)

Note that the power series in (5.1) has radius of convergence r ≥ 1.

Definition 5.1.1 also applies if Z is not finite with probability 1. In this case, we compute

P(Z <∞) = fZ(1).

Uniqueness of fZ : The probability generating function fZ encodes information about

the distribution of Z. It fully determines the distribution. The coefficients in the power

series representation of fZ are the probabilities of the probability mass function µ of Z.

Since two functions that are represented by a power series are equal if and only if the

coefficients in their power series are equal, we have fZ = fY if and only if Z ∼ Y . Note

that we can recover the probability mass function µ for a random variable Z from its

probability generating function fZ by taking derivatives:

µ(0) = fZ(0), µ(1) = f ′Z(0), µ(2) =
1

2
f ′′Z(0), ..... , µ(k) =

1

k!
f

(k)
Z (0) .

Example 5.1.1. Let Z be a Bernoulli random variable with P(Z = 1) = p and P(Z =

0) = 1− p. Then

fZ(t) = 1− p+ pt .

�
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Example 5.1.2. Let Z have the geometric distribution with parameter p < 1. That is,

P(Z = k) = (1− p)pk for k ≥ 0. Then

fZ(t) =
∞∑
k=0

(1− p)pktk =
1− p
1− pt

.

�

Example 5.1.3. Let Z have a Poisson distribution with parameter λ. So P(Z = k) =
λke−λ

k!
, and

fZ(t) = e−λ
∞∑
k=0

(λt)k/k! = e−λeλt = eλ(t−1) .

�

Proposition 5.1.1. Let Y and Z be independent random variables taking values

in N0. Then

fY+Z(t) = fY (t)fZ(t) .

Proof. Since Y and Z are independent, fY+Z(t) = E(tY+Z) = E(tY )E(tZ) = fY (t)fZ(t).

By induction, if Z1, ..., Zn are n independent random variables taking values in N0 and

Z = Z1 + · · ·+ Zn, then

fZ(t) =
n∏
k=1

fZk(t) .

As a consequence, if (X
(k)
n )n≥0 denotes a branching process starting with k particles, we

have

f
X

(k)
n

(t) = (fXn(t))k .

Example 5.1.4. Let Z have a binomial distribution with parameters p and n. Then

Z ∼ X1 + · · · + Xn where the Xk are i.i.d Bernoulli random variables with parameter p.

Thus

fZ(t) = (1− p+ pt)n .

Alternatively, in computing fZ(t) directly, we have

fZ(t) =
n∑
k=0

(
n

k

)
pk(1− p)1−ptk = (1− p+ pt)n .

�
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Example 5.1.5. By Example 5.1.3, the probability generating function for a Poisson

random variable Y ∼ Poisson(λ) is fY (t) = eλ(t−1). Let X ∼ Poisson(ν) and assume X

and Y are independent. Then

fX+Y (t) = eλ(t−1)eν(t−1) = e(λ+ν)(t−1)

which we identify as the probability generating function of a Poisson random variable

with parameter λ + ν. Since fX+Y (t) uniquely determines the distribution of X + Y ,

this proves that the sum of two independent Poisson random variables is also a Poisson

random variable (whose parameter is the sum of the individual parameters). �

Theorem 5.1.2 (Continuity theorem). Consider a sequence of random variables

X1, X2, .... that take values in N0. For each n ≥ 1, we denote its probability

mass function by µ(n), that is, P(Xn = k) = µ(n)(k) for k ≥ 0. We assume∑∞
k=0 µ

(n)(k) = 1 for all n ≥ 1, and denote the probability generating function of

µ(n) by fn. Then the following holds.

lim
n→∞

µ(n)(k) = µ(k) for all k ≥ 0 (5.2)

for a sequence of nonnegative numbers µ(k), k ≥ 0, if and only if

lim
n→∞

fn(t) = f(t) for all 0 < t < 1

for a function f : (0, 1) → [0,∞). In this case,
∑∞

k=0 µ(k) ≤ 1, and f is the

probability generating function of µ.

Note that (5.2) describes convergence in distribution of the random variablesX1, X2, ...

to a (possibly not a.s. finite) random variable X ∼ µ. We have P(X <∞) =
∑∞

k=0 µ(k).

For a proof of Theorem 5.1.2, see [30].

Example 5.1.6. Fix a number λ > 0. Consider a sequence X1, X2, ... of binomial random

variables with Xn ∼ Bin(n, pn) and pn = λ/n for n ≥ 1. Then

fXn(t) =

(
1− λ

n
+ t

λ

n

)n
=

(
1 +

λ

n
(t− 1)

)n
and for all t ∈ R,

lim
n→∞

(
1 +

λ

n
(t− 1)

)n
= eλ(t−1)

which we recognize as the probability generating function of a Poisson random variable

with parameter λ. Hence X1, X2, ... converge in distribution to a random variable X ∼
Poisson(λ). �
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Proposition 5.1.3. Let Z1, Z2, ... be i.i.d. random variables with Zi ∼ Z and N a

random variable independent of the Z1, Z2, .... The Zi’s as well as N are a.s. finite,

nonnegative, and integer-valued random variables. Consider the random sum

SN = Z1 + · · ·+ ZN .

Then the probability generating function of SN is

fSN (t) = fN(fZ(t)) .

Proof. We have

E(tSN ) = E(E(tSN |N)) =
∞∑
k=0

P(N = k)E(tSN |N = k) .

Recall that E(tSN |N = k) = (fZ(t))k, and so

fSN (t) = E(tSN ) =
∑∞

k=0 P(N = k)(fZ(t))k

= fN(fZ(t)) .

We can compute moments of Z via differentiation of fZ :

Proposition 5.1.4. Let Z be a random variable taking values in N0 and fZ(t) =∑∞
k=0 µ(k)tk its probability generating function. Then

E(Z) = lim
t→1−

f ′Z(t)

(the limit may be infinite), and if E(Z) <∞,

Var(Z) = lim
t→1−

f ′′Z(t) + E(Z)− (E(Z))2 .

Proof. First, assume the radius of convergence r of the power series is strictly greater

than 1. Then all derivatives of fZ(t) exist and are finite at t = 1 and can be computed

by term-by-term differentiation of
∑∞

k=0 µ(k)tk. We have

f ′Z(t) =
∞∑
k=1

µ(k)ktk−1
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and thus f ′Z(1) = E(Z). Furthermore,

f ′′Z(t) =
∞∑
k=2

µ(k)k(k − 1)tk−2

and thus f ′′Z(1) = E(Z2−Z) = E(Z2)−E(Z) from which the given expression for Var(Z)

follows.

Now assume r = 1. Since µ(k)k ≥ 0 for all k ≥ 1, the function f ′Z(t) on [0, 1) is

nondecreasing, and we have

f ′Z(t) ≤
∞∑
k=1

µ(k)k = E(Z) .

Because of the monotonicity of the function f ′Z(t) on [0, 1), either lim
t→1−

f ′Z(t) = ∞ or

lim
t→1−

f ′Z(t) = L <∞. In the former case, if lim
t→1−

f ′Z(t) =∞, it follows that

E(Z) =∞ .

If lim
t→1−

f ′Z(t) = L < ∞, then for any nondecreasing sequence (tn)n≥1 of numbers in [0, 1)

with lim
n→∞

tn = 1 we must have

lim
n→∞

∞∑
k=1

µ(k)ktk−1
n = L . (5.3)

Applying the Monotone Convergence theorem (Theorem C.3.1) to (5.3), we get

lim
n→∞

∞∑
k=1

µ(k)ktk−1
n =

∞∑
k=1

µ(k)k
[

lim
n→∞

tk−1
n

]
= L

which yields

lim
t→1−

f ′Z(t) = L = E(Z) .

If E(Z) < ∞, we can apply a similar reasoning as above to the function f ′′Z(t) on [0, 1).

This yields

lim
t→1−

f ′′Z(t) = E(Z2)− E(Z),

from which we get

Var(Z) = lim
t→1−

f ′′Z(t) + E(Z)− (E(Z))2 .
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Note: We can compute higher order moments of Z in a similar fashion.

We return to branching processes. In the following, assume that the branching process

starts with one particle. We will now compute the probability generating function

fXn(t) = E(tXn) =
∞∑
k=0

P(Xn = k)tk

of the size Xn of the n-th generation. Let Z be the offspring random variable for the

process. For ease of notation, we will write f(t) instead of fZ(t) for its generating function.

Thus fX1(t) = f(t). We will also use the following notation for the n-fold composition of

the function f with itself:

f2(t) = f(f(t))

and

fn(t) = f(fn−1(t)) = f(f(...f(t)...) = fn−1(f(t)) for n ≥ 2 .

Proposition 5.1.5. Let (Xn)n≥0 be a branching process starting with one particle,

and let f(t) be the probability generating function of its offspring random variable

Z. Then for any k, l > 0 with k+ l = n, the probability generating function for Xn,

i.e., for the size of the n-th generation n, is

fXn(t) = fXk(fXl(t)) ,

and in particular,

fXn(t) = fn(t) = f(f(...f(t)...)) ,

the n-fold composition of f with itself.

Proof.

fXn(t) =
∑
m≥0

P n
1mt

m

=
∑
m≥0

(∑
s≥0

P k
1sP

l
sm

)
tm =

∑
s≥0

P k
1s

(∑
m≥0

P l
smt

m

)

=
∑
s≥0

P k
1sfX(s)

l
(t) =

∑
s≥0

P k
1s(fXl(t))

s

= fXk(fXl(t)) .

Since fX1(t) = f(t), we have fX2(t) = f2(t). Since fXn(t) = f(fXn−1(t)), the formula

fXn(t) = fn(t) follows by induction on n.
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Corollary 5.1.6. Let (Xn)n≥0 be a branching process starting with one particle,

and let f(t) be the probability generating function for its offspring random variable

Z. Set m = E(Z) and σ2 = Var(Z) and assume both m,σ2 <∞. Then

(a) E(Xn) = mn, and

(b)

Var(Xn) =

 nσ2 if m = 1 ,
σ2(mn − 1)mn−1

m− 1
if m 6= 1 .

Proof. (a) Since m,σ2 <∞, the generating function f(t) of Z is twice (left) differentiable

at 1, and therefore the same is true for any n-fold composition of f . We have E(Z) =

m = f ′(1) and E(Xn) = f ′n(1). From this we get

E(X2) = f ′2(1) = f ′(f(1))f ′(1) = m2 ,

and, by induction,

E(Xn) = f ′(fn−1(1))f ′n−1(1) = m ·mn−1 = mn .

(b) By Proposition 5.1.4, we have

Var(Xn) = f ′′n(1) + f ′n(1)− (f ′n(1))2 = f ′′n(1) +mn −m2n .

From f ′n(t) = f ′(fn−1(t))f ′n−1(t) we get

f ′′n(t) = f ′′n−1(f(t))[f ′(t)]2 + f ′n−1(f(t))f ′′(t)

and so

f ′′n(1) = f ′′n−1(1)m2 +mn−1f ′′(1) = f ′′n−1(1)m2 +mn−1(σ2 −m+m2) .

We denote Var(Xn) = σ2
n and get the recursive formula

σ2
n = f ′′n(1) +mn −m2n

= f ′′n−1(1)m2 +mn−1(σ2 −m+m2) +mn −m2n

= σ2mn−1 +m2σ2
n−1 .

Thus σ2
1 = σ2, σ2

2 = σ2(m+m2), σ2
3 = σ2(m2 +m3 +m4), and, by induction,

σ2
n = σ2(mn−1 + · · ·+m2n−2) = σ2mn−1(1 +m+ · · ·+mn−1)
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from which we conclude

Var(Xn) = σ2
n =

 nσ2 if m = 1 ,
σ2(mn − 1)mn−1

m− 1
if m 6= 1 .

Note that if the branching process starts with k particles, we have

E(X(k)
n ) = kmn

and, by independence,

Var(X(k)
n ) =

 k nσ2 if m = 1 ,
kσ2(mn − 1)mn−1

m− 1
if m 6= 1 .

Definition 5.1.2. Let (Xn)n≥0 be a branching process and Z its offspring random

variable. Set m = E(Z).

• If m > 1, we call the process supercritical.

• If m < 1, we call the process subcritical.

• If m = 1, we call the process critical.

The above three cases behave very differently in terms of their long-term growth behavior

of their population. In the supercritical case, we expect the population size to “explode”,

whereas in the subcritical case, the population will a.s. eventually die out. The follow-

ing section, as well as Section 6.6.3, provide more details about the growth behavior of

branching processes.

5.2 Extinction

Will the population whose size is modeled by a given branching process eventually die

out? Clearly, µ(0) > 0 is a necessary condition for this event to have positive probability.

Throughout this section we will assume µ(0) > 0. Assume the branching process starts

with one particle, and let T = min{n : Xn = 0} be the time until extinction. We define

the extinction probability e0 by

e0 = P(T <∞) .

Note that state 0 is absorbing. All other states x ∈ N are transient, since they lead into

0 due to Px0 = (µ(0))x > 0. By independence, the extinction probability e
(k)
0 for a process
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(X
(k)
n )n≥0 that starts with k particles is

e
(k)
0 = (e0)k .

Example 5.2.1. Assume the process starts with one particle. Consider an offspring

distribution µ with µ(0) + µ(1) = 1 and µ(0), µ(1) 6= 1. Then the random variable T has

a geometric distribution. Indeed, since the offspring distribution allows for only one or

zero particles, we have P(T > n) = (µ(1))n. Thus

e0 = 1− lim
n→∞

P(T > n) = 1 .

We compute

E(T ) =
∞∑
n=0

P(T > 0) =
1

1− µ(1)
.

�

In the following we will assume µ(0) > 0 and µ(0) + µ(1) < 1.

Consider the sequence of events {T ≤ n} = “population goes extinct by Generation n”,

n ≥ 0. Note that {T ≤ n} is the event that the populations dies out in Generation n or

in an earlier generation. Clearly, {T ≤ n− 1} ⊆ {T ≤ n}. So

{T <∞} =
⋃
n≥0

{T ≤ n} .

Using the notation un = P(T ≤ n), we have

lim
n→∞

↑ un = e0 .

Note that

un = P(Xn = 0) = fn(0) .

Also note that P(Xn = 0, Xn−1 6= 0) = un − un−1, which is the probability that the

population becomes extinct in Generation n.

We have fn(0) = f(fn−1(0)) = f(P(T ≤ n − 1)). It follows that e0 is the solution to the

recursion un = f(un−1) with u0 = 0. Since f is continuous, we can interchange lim and f

and get

lim
n→∞

↑ un = f( lim
n→∞

↑ un−1) ,

and thus

e0 = f(e0) .

This proves the following proposition:
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Proposition 5.2.1. Let (Xn)n≥0 be a branching process that starts with one particle

and let f be the probability generating function of its offspring distribution µ. We

assume 0 < µ(0) < 1. Let T = min{n : Xn = 0}. Then the extinction probability

e0 = P(T <∞) is the smallest fixed point of the function f on the interval

[0, 1].

Note that 1 is always a fixed point of f . But depending on the offspring distribution µ,

there may be an additional smaller fixed point e0 ∈ [0, 1). [Of course f may have fixed

points that lie outside the interval [0, 1] as well, but they are not of interest here.]

We will now closer investigate the graph of f on the interval [0, 1]. Throughout we

assume µ(0) = f(0) > 0, and µ(0) + µ(1) < 1. These conditions imply f ′(t) > 0 and

f ′′(t) > 0 on [0, 1), and hence the continuous function f is strictly increasing and

strictly convex on [0, 1). As a consequence of these properties of f , we have the following

possible scenarios for the graph of f :

For the supercritical case f ′(1) = m > 1, the graph of f crosses the diagonal y = t

exactly once on the interval [0, 1). See Figure 5.2. This single fixed point e0 of f on the

interval [0, 1) is the extinction probability.

u1 = f(0)

t1

1

u1 u2...

f(t)

e0

f ′(1) = m > 1

Supercritical case

0 < e0 < 1

Figure 5.2: Graph of the generating function f for the supercritical case

For the subcritical case f ′(1) = m < 1 or the critical case f ′(1) = m = 1, the graph

of f does not cross the diagonal y = t on the interval [0, 1). See Figure 5.3. Hence the

extinction probability e0 is 1.

Example 5.2.2. Consider a branching process (Xn)n≥0 with offspring random variable

Z ∼ Bin(1
2
, 3). Assume the process starts with one particle.
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u1 = f(0)

t

1

u1 u2 ...

f(t)

e0 = 1

f ′(1) = m ≤ 1

Subcritical or critical case

e0 = 1

Figure 5.3: Graph of f for the subcritical or critical case

(a) Find the extinction probability e0.

(b) Find the probability that the population goes extinct in the second generation.

Solution: Note that E(Z) = 3
2
> 1. The generating function fZ of Z is

fZ(t) = (
1

2
+

1

2
t)3 =

1

8
t3 +

3

8
t2 +

3

8
t+

1

8
.

(a) We need to find the smallest positive solution to fZ(t) = t. This yields the equation

t3 + 3t2 − 5t+ 1 = 0 .

Factoring out (t − 1) on the left-hand side results in (t − 1)(t2 + 4t − 1) = 0 . We then

set t2 + 4t− 1 = 0 and get the solutions t = −2±
√

5 . Hence the smallest positive fixed

point of fZ is −2 +
√

5, and so we have

e0 = −2 +
√

5 .

(b) We need to find P(T = 2) = f(f(0)) − f(0) (we have written f for fZ). A straight-

forward computation yields f(0) = 1
8

and

f(f(0)) = f(
1

8
) =

729

84
≈ 0.18 .

Thus we get

P(T = 2) ≈ 0.18− 0.125 = 0.055 .

�
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Example 5.2.3. Consider a branching process (Xn)n≥0 with offspring random variable

Z ∼ Geom(p). Assume 0 < p < 1, and set q = 1 − p. Recall that E(Z) = q/p. Also,

recall from Example 5.1.2 that

fZ(t) =
∞∑
k=0

q pktk =
q

1− pt
.

We compute the extinction probability by solving

q

1− pt
= t ,

or equivalently,

p t2 − t+ q = p(t− 1)

(
t− q

p

)
= 0 .

It follows that the extinction probability is

e0 = min(1, q/p) =

{
q/p for p > 1

2

1 for p ≤ 1
2
.

�

In the following we take a closer look at the distribution of the time T until extinc-

tion. Recall that un = P(T ≤ n) and lim
n→∞

↑ un = e0. Because of the strict convexity of

the function f , we have

f ′(un−1) <
f(e0)− f(un−1)

e0 − un−1

< f ′(e0) ,

and so

f ′(un−1)(e0 − un−1) < e0 − un < f ′(e0)(e0 − un−1) . (5.4)

Supercritical case

For the supercritical case m > 1, we have e0 < 1. Because of the strict convexity of f , we

have f ′(e0) < 1. The second inequality in (5.4) reads

e0 − P(T ≤ n) < f ′(e0)(e0 − P(T ≤ n− 1) for all n ≥ 1 . (5.5)

From (5.5) we derive by induction,

e0 − P(T ≤ n) < (f ′(e0))ne0 for all n ≥ 1
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or equivalently

P(n < T <∞) < (f ′(e0))ne0 for all n ≥ 1 .

Since P(T =∞) = 1− e0 > 0, we have E(T ) =∞.

Subcritical case

For the subcritical case m < 1, we have e0 = 1. By (5.4),

1− P(T ≤ n) < m (1− P(T ≤ n− 1) .

hence

P(T > n) < mP(T > n− 1) ,

which, by induction, yields

P(T > n) < mn for all n ≥ 0 .

Thus we get the following upper bound for the expected time until extinction

E(T ) =
∞∑
n=0

P(T > n) <
∞∑
n=0

mn =
1

1−m
.

Critical case

For the critical case m = 1, we have e0 = 1, i.e., with probability 1, a sample path of

the process will eventually reach the absorbing state 0 (extinction). To determine the

expected time E(T ) until extinction, a more subtle analysis of the convergence rate of

fn(0) ↑ 1 is needed. Towards this end, we quote the following result whose proof can be

found in [4].

Theorem 5.2.2. Let (Xn)n≥0 be a branching process with X0 = 1, Z its offspring

random variable, and fn the probability generating function of Xn. If E(Z) = 1 and

Var(Z) = σ2 <∞. Then

lim
n→∞

1

n

(
1

1− fn(t)
− 1

1− t

)
=
σ2

2

uniformly on the interval [0, 1).

We get the following corollary for an asymptotic estimate of the tail probabilities of T :
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Corollary 5.2.3. Let (Xn)n≥0 be a branching process with X0 = 1 and E(Z) = 1

and σ2 <∞. Then, as n→∞,

P(T > n) ∼ 2

nσ2
. (5.6)

Proof. Recall that fn(0) = P(Xn = 0) = P(T ≤ n). Hence

1− fn(0) = P(T > n) .

By Theorem 5.2.2,

lim
n→∞

2

nσ2

(
1

1− fn(0)
− 1

)
= lim

n→∞

2/nσ2

1− fn(0)
= 1

which proves the corollary.

As a consequence of (5.6), for the critical case E(Z) = 1, we have

E(T ) =
∞∑
n=0

P(T > n) =∞ .

Although extinction happens with probability 1, the expected time until extinction is

infinite.

Exercises

Exercise 5.1. Let Y1, Y2, ... be a sequence of i.i.d. Bernoulli random variables with

P(Yi = 1) = p and P(Yi = 0) = 1− p. Furthermore, let N be an a.s. finite, nonnegative,

integer-valued random variable independent of the Y1, Y2, .... Consider the random sum

SN = Y1 + · · · + YN . For each of the following distributions of N , find the probability

generating function fSN (t) and from it, determine the distribution of SN .

(a) N ∼ Bin(n, p̃) (b) N ∼ Poisson(λ)

Exercise 5.2. Consider a branching process (Xn)n≥0 with offspring distribution µ for

which µ(0) 6= 0. Assume X0 = 1.

(a) Show that every non-zero state is transient.
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(b) Let fn denote the probability generating function of Xn for n ≥ 1. Show that there

exists a function f : (0, 1)→ [0,∞) such that

lim
n→∞

fn(t) = f(t) for all t ∈ (0, 1).

Find f .

Exercise 5.3. Let (Xn)n≥0 be a branching process with geometric offspring distribution

µ given by µ(n) = 1
3
(2

3
)n for n ≥ 0. Assume X0 = 1.

(a) Compute P(X2 = 1).

(b) Compute P(X1 = k |X2 = 1).

Exercise 5.4. In a branching process (Xn)n≥0 with immigration, a random number of

immigrants In is independently added to the population at the nth generation for n ≥ 1.

At time 0, the process starts with one individual. The offspring distribution for each

individual is given by the offspring random variable Z with probability generating function

fZ . Denote the probability generating function of In by fIn . If fXn denotes the probability

generating function of the size of the nth generation, show that

fXn(t) = fXn−1(fZ(t))fIn(t) .

Exercise 5.5. Consider a branching process for which the offspring distribution µ is given

by µ(0) = 1/4, µ(1) = 2/5, µ(2) = 7/20, and µ(n) = 0 otherwise.

(a) Assume that the process starts in Generation 0 with one individual. What is the

probability that the population ultimately dies out?

(b) Assume the process starts with 3 individuals. What is the probability that the

population survives forever?

(c) Assume that the process starts with 5 individuals. Compute the probability that

the population dies out in the 3rd generation.

(d) Assume that the process starts with one individual. Compute the probability that

the population dies out in the 3rd generation, given that it is not already extinct in

the 2nd generation.

Exercise 5.6. Consider a branching process (Xn)n≥0 with offspring random variable Z

whose probability generating function is fZ . Let

Yn = X0 +X1 + · · ·+Xn

be the total number of individuals up through Generation n.
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(a) Prove that the probability generating functions fYn satisfy the recurrence relation

fYn(t) = tfZ(fYn−1(t)) for n ≥ 1 .

(b) Assume the branching process is subcritical. Consider Y = lim
n→∞

Yn, the total progeny

of the branching process. Show that

fY (t) = tfZ(fY (t))

and compute E(Y ). From the value of E(Y ), conclude (once more) that for a

subcritical branching process, extinction happens in finite time with probability 1.

Exercise 5.7. Let (Xn)n≥0 be a supercritical branching process with geometric offspring

distribution µ given by µ(n) = (1−p)pn for n ≥ 0. Assume X0 = 1. Consider the following

variation of this process: Each individual, independently of all other individuals, is given

a survival probability of p̃. That is, each individual will die with probability (1− p̃) before

it has a chance to produce offspring for the next generation. This defines a new branching

process (Yn)n≥0. Find a condition on p̃ (in terms of p) under which the population of

(Yn)n≥0 will ultimately die out with probability 1.

Exercise 5.8. Consider a branching process (Xn)n≥0 with offspring distribution µ defined

by µ(k) = (1/2)k+1 for k ≥ 0. The process starts with one individual.

(a) Show that the probability generating function of the size of the nth generation is

fXn(t) =
n− (n− 1)t

n+ 1− nt
.

(b) Let T be the time of extinction. Is T an a.s. finite random variable? Compute the

distribution of T .

Exercise 5.9. Consider the same branching process as in Exercise 5.8. Let Nk denote

the total number of generations for which the population size is exactly k individuals.

Compute E(N1). (Hint:
∞∑
n=1

1

n2
=
π2

6
)

Exercise 5.10. Again, consider a branching process (Xn)n≥0 with offspring distribution

µ defined by µ(k) = (1/2)k+1 for k ≥ 0, and assume the process starts with one individual.

In this case however, if the population ever dies out, then a single new individual will be

added from outside. Note that this change makes the branching process an irreducible

Markov chain. Is this Markov chain transient, positive recurrent, or null recurrent?

Exercise 5.11. Consider the (explosive) branching process (Xn)n≥0 with offspring dis-

tribution ν defined by ν(k) = (1/2)k for k ≥ 1.
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(a) For n ≥ 1, compute a formula for the probability generating function fXn(t).

(b) Does lim
n→∞

fXn(t) exist for all t ∈ (0, 1)? If so, what is the limit function?

Exercise 5.12. Fix 0 < p < 1. Consider a branching process (Xn)n≥0 with offspring

distribution µ defined by µ(0) = 1 − p and µ(1) = p. Assume the process starts with

k0 > 0 particles. Let T be the time of extinction of the process. Compute the distribution

of T .

Exercise 5.13. Consider a branching process (Xn)n≥0 whose offspring distribution has

probability mass function µ(0) = (1− q), and µ(1) = µ(2) = q
2

for some q ∈ (0, 1).

(a) For which values of q will the population eventually die out with probability one?

(b) Assume q = 4
5

and, furthermore, the process does not start with a fixed number of

individuals, but the distribution of X0 follows a Poisson distribution with parameter

λ = 2. Find P(X1 = 1).

Exercise 5.14. Let (Xn)n≥0 be a supercritical branching process with offspring distribu-

tion µ for which µ(0) 6= 0. Denote the probability of ultimate extinction of the process

by e0. Now consider the sequence

µ̃(k) = ek−1
0 µ(k) for k ≥ 0.

(a) Show that µ̃(k), k ≥ 0, defines a probability distribution on N0.

(b) Show that the expectation of of the distribution µ̃ on N0 is strictly less than 1.

Exercise 5.15. Consider a supercritical branching process (Xn)n≥0 whose offspring dis-

tribution is Poisson(λ) with λ > 1. Let e0 be the probability of ultimate extinction for

the process.

(a) Let µ̃(k) = ek−1
0 µ(k), k ≥ 0, as in Exercise 5.14. What kind of distribution is µ̃?

(b) Prove that

e0 <
1

λ
.

(Hint: Use the result from Exercise 5.14 part (b).)

Exercise 5.16. Let (Xn)n≥0 be a supercritical branching process with offspring distri-

bution µ for which µ(0) 6= 0 and denote its probability of ultimate extinction by e0.

Consider a second branching process (X̃n)n≥0 with offspring distribution µ̃ defined by

µ̃(k) = ek−1
0 µ(k), k ≥ 0. By the result from Exercise 5.14 part (b), the branching process

(X̃n)n≥0 is subcritical.
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(a) Let fn denote the probability generating function of Xn, and let f̃n denote the

probability generating function of X̃n for n ≥ 1. Prove by induction that for all

n ≥ 1,

f̃n(t) =
1

e0

fn(e0t).

(b) Let A be the event ”the population of process (Xn)n≥0 ultimately becomes extinct”.

So P(A) = e0. Use your result from part (a) to show that for all n ≥ 1 and k ≥ 0,

P(X̃n = k) = P(Xn = k |A).

In other words, the distribution of the branching process (X̃n)n≥0 is the same as

the distribution of the branching process (Xn)n≥0, conditioned on the event that its

population ultimately becomes extinct.



Chapter 6

Martingales

6.1 Definition of a Martingale

Martingales constitute an important class of stochastic processes. They are defined in

terms of certain conditional expectations for their variables. We give a precise definition

below. Although the dependence structure for the variables of a martingale is very dif-

ferent from that of a Markov chain, there is also some overlap between these two types

of processes, with discrete harmonic functions playing a role in connecting the two struc-

tures. Under certain conditions, martingales can also be viewed as a generalization of

random walks on R with mean-zero step distribution (see Proposition 6.1.2 below). Often

times, as we will illustrate in examples, a question of interest for a given Markov chain

can be rephrased as a question for a suitably chosen, related martingale and thus solved

using the rich mathematical theory that is available for martingales.

181
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Definition 6.1.1. Let (Mn)n≥0 and (Xn)n≥0 be two real-valued stochastic processes

on the same probability space. We say that (Mn)n≥0 is a martingale with respect

to (Xn)n≥0 if for all n ≥ 0,

(a) Mn is a function of X0, ..., Xn, and

(b) E(|Mn|) <∞, and

(c) E(Mn+1 |X0, ..., Xn) = Mn a.s.

We say that (Mn)n≥0 is a supermartingale if (c) is replaced by

E(Mn+1 |X0, ..., Xn) ≤Mn a.s.,

and (Mn)n≥0 is a submartingale if (c) is replaced by

E(Mn+1 |X0, ..., Xn) ≥Mn a.s.

If a process (Mn)n≥0 satisfies condition (a) in Definition 6.1.1, we say (Mn)n≥0 is adapted

to the process (Xn)n≥0. The following is a special case of Definition 6.1.1.

Definition 6.1.2. Let (Mn)n≥0 be a real-valued stochastic process. We say that

(Mn)n≥0 is a martingale if for all n ≥ 0,

(a) E(|Mn|) <∞, and

(b) E(Mn+1 |M0, ...,Mn) = Mn a.s.

Example 6.1.1. Consider a sequence X1, X2, ... of independent random variables with

E(|Xk|) < ∞ and E(Xk) = 0 for all k ≥ 1. Then the process (Mn)n≥1 defined by the

partial sums Mn =
n∑
k=1

Xk for n ≥ 1 is a martingale with respect to (Xn)n≥1: Clearly, for

all n ≥ 1, Mn is a function of X1, ..., Xn. By the triangle inequality and the integrability

assumption on the Xk,

E(|Mn|) ≤
n∑
k=1

E(|Xk|) <∞ ,

and by independence of the Xk,

E(Mn+1 |X1, ..., Xn) = E(Mn +Xn+1 |X1, ..., Xn)

= Mn + E(Xn+1)

= Mn
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for all n ≥ 1.

Example 6.1.2 (Random walk). Fix x ∈ R. As a special case of Example 6.1.1, consider

the constant random variable X0 ≡ x and an i.i.d. sequence of random variables X1, X2, ...

with E(Xk) = m <∞. Set X̃k = Xk−m. The process (Sn)n≥0 with Sn = X0+X̃1+· · ·+X̃n

is random walk on R with mean-zero step size. The process (Mn)n≥0 defined by

Mn = Sn =
n∑
k=0

Xk − nm

is a martingale with respect to (Xn)n≥0. �

Example 6.1.3. We consider random walk on Z. Assume X0 = x, E(Xk) = 0, and

Var(Xk) = σ2 <∞. Then the process (Mn)n≥0 defined by

Mn = (Sn)2 − σ2 n

is a martingale with respect to (Xn)n≥0. Clearly, for all n ≥ 0, Mn is a function of

X0, X1, ..., Xn. By the triangle inequality, and since E(Xk) = 0,

E(|Mn|) ≤ E(S2
n) + σ2 n = x2 + nσ2 + σ2 n = x2 + 2nσ2 <∞ .

We have

E(S2
n+1 |X0, X1, ..., Xn) = E

(
(
n+1∑
i=0

Xi)
2 |X0, X1, ..., Xn

)

= E

(
n+1∑
i=0

X2
i +

∑
0≤i<j≤n+1

2XiXj |X0, X1, ..., Xn

)

= σ2 +
n∑
i=0

X2
i +

∑
0≤i<j≤n

2XiXj = σ2 + S2
n .

It follows that

E(Mn+1 |X0, X1, ..., Xn+1) = σ2 + S2
n − (n+ 1)σ2 = S2

n − nσ2 = Mn ,

and so (Mn)n≥0 is a martingale with respect to (Xn)n≥0. �

Example 6.1.4. Consider simple random walk on Z with step random variable Xi with

P(Xi = 1) = p, P(Xi = −1) = q, and P(Xi = 0) = r. Assume 0 < p < 1, and p+q+r = 1.

The process (Mn)n≥0 defined by

Mn = (
q

p
)Sn for n ≥ 0
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is a martingale with respect to (Xn)n≥1. When p = q, this is the constant process Mn ≡ 1.

Assume p 6= q. It is clear that parts (a) and (b) from Definition 6.1.1 hold. To check (c),

consider

E(Mn+1 |X1, ..., Xn) = E
(

(
q

p
)Sn(

q

p
)Xn+1 |X1, ..., Xn

)
.

Invoking the independence of the Xi, we get

E(Mn+1 |X1, ..., Xn) = ( q
p
)SnE

(
( q
p
)Xn+1

)
= ( q

p
)Sn
[
p q
p

+ q( q
p
)−1 + r · 1

]
= ( q

p
)Sn = Mn .

�

Note that a martingale is both a submartingale and a supermartingale.

Proposition 6.1.1. If (Mn)n≥0 is a martingale with respect to (Xn)n≥0, then for

all n, k ≥ 0,

E(Mn+k |X0, ..., Xn) = Mn

and, consequently,

E(Mn) = E(M0)

for all n ≥ 0.

Proof. Let (Mn)n≥0 be a martingale with respect to (Xn)n≥0. For any k ≥ 1, by the tower

property of conditional expectation,

E(Mn+k |X0, ..., Xn) = E[E(Mn+k |X0, ..., Xn+k−1) |X0, ..., Xn] . (6.1)

By Definition 6.1.1(c), the right-hand side of (6.1) is E(Mn+k−1 |X0, ..., Xn). By iteration,

we get

E(Mn+k−1 |X0, ..., Xn) = ... = E(Mn+1 |X0, ..., Xn) = Mn .

Thus E(Mn+k |X0, ..., Xn) = Mn for all n, k ≥ 0. Taking expectations yields

E(Mn) = E(M0) for all n ≥ 0 .

Example 6.1.5. Let (Xn)n≥0 be finite state Markov chain with state space S ⊂ R and

assume (Xn)n≥0 is also a martingale. Thus we have∑
k∈S

Pikk = i for all i ∈ S . (6.2)
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Since S is finite, there exists a smallest state a and a largest state b in S. It follows from

(6.2) that Paa = 1 and Pbb = 1, so a and b are absorbing states. Assume that all other

states in S are transient. With probability 1, the process will get absorbed in either state

a or state b. By Proposition 6.1.1, we have∑
k∈S

P n
ikk = i for all i ∈ S and for all n ≥ 0 . (6.3)

Consider the absorption probability ai,b = P(T b < ∞|X0 = i), that is, the probability

that the process ultimately gets absorbed in state b, given that the Markov chain started

in state i. Recall that for any transient state j, we have limn→∞ P
n
ij = 0. Taking the limit

of the sum in (6.3) yields

lim
n→∞

∑
k∈S

P n
ikk = a(1− ai,b) + b ai,b = i ,

and from this we get

ai,b =
i− a
b− a

. (6.4)

Notice that formula (6.4) matches formula (4.18) for the gambler’s ruin probabilities. �

Example 6.1.6 (Fixation probabilities for the Wright-Fisher model). Recall the Wright-

Fisher model for genetic drift that was introduced in Section 1.5. It is a Markov chain

(Xn)n≥0 on state space S = {0, 1, ..., N} where N is the population size. Xn is the count

of allele A in Generation n. The transition probabilities Pkl follow a binomial distribution:

Pkl =

(
N

l

)
(
k

N
)l(1− k

N
)N−l for k, l = 0, 1, ..., N .

States 0 and N are absorbing, and all other states lead into 0 and N . The Wright-Fisher

model is also a martingale:

E(|Xn|) ≤ N ,

and

E(Xn+1 |X0, X1, ..., Xn) = E(Xn+1 |Xn) = N
Xn

N
= Xn .

Thus formula (6.4) applies. Given that the chain starts in state i, the fixation proba-

bility aiN = P(TN <∞|X0 = i) is

aiN =
i

N
.
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It is the probability that eventually the gene pool gets fixated in A, that is, all N indi-

viduals in the population have genotype A. The complementary probability ai0 = 1−aiN
is

ai0 =
N − i
N

.

It is the probability that eventually the gene pool gets fixated in a, that is, allN individuals

in the population have genotype a.

If a new mutation arises in a population, its original count is 1. And so the probability

that this newly arisen genotype eventually fixates is 1/N . �

Example 6.1.7 (Fixation probabilities for the Moran model). Recall the Moran model

for genetic drift that was introduced in Section 1.5. It is a Markov chain (Xn)n≥0 on state

space S = {0, 1, ..., N}. Xn gives the allele A count in the population at time n. The

transition probabilities are

Px,x+1 = Px,x−1 =
(N − x)x

N2
Pxx = 1− 2

(N − x)x

N2
,

and 0 and N are absorbing states. The Moran model (Xn)n≥0 is a martingale. Indeed,

E(|Xn|) ≤ N ,

and

E(Xn+1 |X0, X1, ..., Xn) = E(Xn+1 |Xn)

= (Xn + 1)p+ (Xn − 1)p+Xn(1− 2p) = Xn

where we have used p = (N−Xn)Xn
N2 .

Thus we get the same fixation probabilities aiN = P(TN < ∞|X0 = i) as for the

Wright-Fisher model:

aiN =
i

N
and ai0 =

N − i
N

.

�

The simplest example of a martingale is random walk (Sn)n≥0 where S0 = x and Sn =∑n
k=0Xk for i.i.d. random variables X1, X2, ... with E(X1) = 0. See Example 6.1.2. The

following shows that under the condition of square-integrability, a martingale (Mn)n≥0

retains some essential features of random walk with mean-zero steps.

Let (Mn)n≥0 be a martingale. Using the notation Dn = Mn −Mn−1, we have

Mn = M0 +
n∑
k=1

Dk for n ≥ 1 .
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By Proposition 6.1.1, E(Dk) = 0 for k ≥ 1.

Definition 6.1.3. We say the martingale (Mn)n≥0 is square-integrable if

E(M2
n) <∞

for all n ≥ 0.

Proposition 6.1.2. Let (Mn)n≥0 be a square-integrable martingale. Then its in-

crements Dk are uncorrelated, that is,

Cov(DkDl) = 0 for k 6= l

and therefore

Var(Mn) = Var(M0) +
n∑
k=1

Var(Dk) .

Proof. Since E(Dk) = 0 for k ≥ 1, we only need to show that E(DkDl) = 0 for k < l.

Write

E(DkDl) = E [E(DkDl |X0, ..., Xl−1)] .

But

E(DkDl |X0, ..., Xl−1) = DkE(Dl |X0, ..., Xl−1) = 0

since, by the martingale property, E(Dl |X0, ..., Xl−1) = Ml−1−Ml−1 = 0. It follows that

E(DkDl) = 0 for k < l.

6.2 Optional Stopping Theorem

For convenience, we recall the definition of a stopping time T for a stochastic process

(Xn)n≥0.

Definition 6.2.1. Let (Xn)n≥0 be a stochastic process. A random variable T defined

on the same probability space as (Xn)n≥0 and taking values in N0 ∪ {∞} is called a

stopping time T if for all m ∈ N0, the event {T = m} can be determined by the

values of X0, X1, ...., Xm.

Whether or not a stopping time T has occurred at time m only depends on the history

of the process (Xn)n≥0 up to (including) time m. The event {T = m} is independent of
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any event determined by the future of the process, that is, by Xm+1, Xm+2, .... Note that

the definition of T implies that the events {T ≤ m} and {T > m} are also determined by

the values of X0, X1, ..., Xm. In the following we will use the notation a ∧ b = min(a, b).

Theorem 6.2.1. Let (Mn)n≥0 be a martingale with respect to (Xn)n≥0 and T a

stopping time. Then the stopped process (Mn∧T )n≥0 defined by

Mn∧T =

{
Mn if n < T ,

MT if n ≥ T

is also a martingale with respect to (Xn)n≥0.

Proof. Fix n > 0. We have

|Mn∧T | ≤ max
0≤k≤n

|Mk| ≤ |M0|+ · · ·+ |Mn| ,

so E(|Mn∧T |) <∞.
Note that for ω ∈ {n < T}, we haveMn(ω) = Mn∧T (ω) as well asMn+1(ω) = M(n+1)∧T (ω).

And for ω ∈ {n ≥ T}, we have Mn∧T (ω) = M(n+1)∧T (ω). So we can write

M(n+1)∧T = Mn∧T + (Mn+1 −Mn)1{n<T} . (6.5)

Taking the conditional expectation with respect to X0, ..., Xn on both sides in (6.5) yields

E(M(n+1)∧T |X0, ..., Xn) = E(Mn∧T |X0, ..., Xn) + E((Mn+1 −Mn)1{n<T} |X0, ..., Xn) .

Since T is a stopping time, the event {n < T} is determined by the values of X0, ..., Xn.

Using the martingale property for (Mn)n≥0, we get

E(M(n+1)∧T |X0, ..., Xn) = Mn∧T + 1{n<T}E((Mn+1 −Mn) |X0, ..., Xn)

= Mn∧T + 1{n<T}0 = Mn∧T .

It follows from Theorem 6.2.1 that E(Mn∧T ) = E(M0) for all n ≥ 0. However, in general,

it is not true that E(MT ) = E(M0). This is illustrated by the following example.

Example 6.2.1. A gambler starts with a fortune of $N and makes a sequence of fair

$1 bets against an infinitely rich adversary. The gambler’s fortune can be described by

simple symmetric random walk (Sn)n≥0 on N0 with absorbing boundary at 0. It is a
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martingale. Let T be the first hitting time of state 0 (bancruptcy) which is a stopping

time for the random walk. Since (Sn)n≥0 is recurrent, P(T <∞) = 1. We have

E(S0) = N 6= 0 = E(ST ) .

�

Given a martingale (Mn)n≥0 and a stopping time T , we would like to know conditions

that guarantee E(MT ) = E(M0). This is the content of the Optional Stopping Theorem

(OST). The following version of the OST is not its most general version, but it is sufficient

for our purposes for applications to Markov chains. It gives a variety of (often fairly easy

to check) sufficient conditions under which E(MT ) = E(M0) holds.

Theorem 6.2.2 (Optional Stopping Theorem). Let (Mn)n≥0 be a martingale with

respect to (Xn)n≥0 and T a stopping time for (Xn)n≥0. Assume at least one of the

conditions hold:

(a) There exists an N0 such that P(T ≤ N0) = 1;

(b) P(T < ∞) = 1 and there exists an K0 < ∞ such that P(|Mn| ≤ K0) = 1 if

n ≤ T ;

(c) E(T ) <∞ and there exists K0 <∞ such that

E(|Mn −Mn−1| |X0, X1, ..., Xn−1) ≤ K0

for n ≤ T .

Then

E(MT ) = E(M0) .

Proof. (a) Since P(T ≤ N0) = 1, we can write

MT = M0 +

N0−1∑
k=0

(Mk+1 −Mk)1{k<T} . (6.6)

Since T is a stopping time, the event {k < T} is determined by X0, ..., Xk. So

E[(Mk+1 −Mk)1{k<T}] = E[E[(Mk+1 −Mk)1{k<T} |X0, ..., Xk]]

= E[1{k<T}E[(Mk+1 −Mk) |X0, ..., Xk]] .

By the martingal property, E[(Mk+1 −Mk) | X0, ..., Xk]] = 0. So (6.6) yields

E(MT ) = E(M0) .
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(b) For n ∈ N consider the stopping time T ∧ n = min(n, T ). Since T ∧ n is a bounded

stopping time, the conditions from part (a) are fulfilled, and we have

E(MT∧n) = E(M0) for all n ∈ N .

Since P(|Mn| ≤ K0) = 1, if n ≤ T , we have

|E(MT )− E(M0)| = |E(MT )− E(MT∧n)| ≤ 2K0P(T > n) .

Since P(T <∞) = 1, we have limn→∞ P(T > n) = 0. This proves

E(MT ) = E(M0) .

(c) As in part (b), consider the bounded stopping time T ∧ n = min(n, T ). By part (a)

we have

E(MT∧n) = E(M0) for all n ∈ N .

Recall that we can write the random variable MT as

MT = M0 +
T−1∑
k=0

(Mk+1 −Mk) = M0 +
∞∑
k=0

(Mk+1 −Mk)1{k<T} .

So

lim
n→∞

MT∧n = lim
n→∞

[
M0 +

n−1∑
k=0

(Mk+1 −Mk)1{k<T}

]
= MT a.s.

We now introduce the random variable

M̃T := |M0|+
∞∑
k=0

|Mk+1 −Mk|1{k<T} .

Note that

|MT∧n| ≤ M̃T a.s.

By the Monotone Convergence Theorem (see Appendix C),

E(M̃T ) = E(|M0|) +
∞∑
k=0

E
(
|Mk+1 −Mk|1{k<T}

)
.

For each individual term in the previous sum we have

E(|Mk+1 −Mk|1{k<T}) = E[E(|Mk+1 −Mk|1{k<T} |X0, ..., Xk)]

= E(1{k<T})E[|Mk+1 −Mk| |X0, ..., Xk)]

≤ P(k < T )K0 .
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Thus, since E(T ) =
∞∑
k=0

P(k < T ) <∞, we get

E(M̃T ) ≤ E(M0) +K0 E(T ) <∞ .

Using the Dominated Convergence Theorem (using M̃T as the dominating random vari-

able), we conclude

lim
n→∞

E(MT∧n) = E(MT ) .

Since E(MT∧n) = E(M0) for all n, we arrive at

E(MT ) = E(M0)

which concludes the proof of part (c).

As an immediate corollary to the OST, we will reprove Wald’s first equation (see Theorem

4.3.1(a)).

Corollary 6.2.3 (Wald’s first equation, revisited). Let X1, X2, .... be i.i.d. random

variables with E(|Xi|) < ∞. Consider (Sn)n≥1 with Sn =
∑n

i=1 Xi, and let T be a

stopping time for (Sn)n≥1. Set m = E(Xi). If E(T ) <∞, then

E(ST ) = mE(T ) .

Proof. We have shown in Example 6.1.2 that the process

Mn = Sn − nm for n ≥ 1

is a martingale. We will show that conditions (c) of the OST hold. Indeed, since

|Mn −Mn−1| = |Sn − Sn−1 −m| = |Xn −m| ,

we have

E(|Mn −Mn−1| |X1, ..., Xn−1) = E(|Xn −m|) ≤ E(|X1|) +m <∞

for all n ≥ 1. Applying the OST, we get

E(MT ) = E(ST − Tm) = E(M1) = E(X1)−m = 0 ,

and so

E(ST ) = mE(T ) .
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6.3 Martingale transforms

An alternate title for this section could be There is no system for beating a fair game (if

funds are limited). Let (Mn)n≥0 be a martingale. We can think of Mn as the capital at

time n of a player in a fair game. As above, we use the notation Dk = Mk −Mk−1, and

can write

Mn =
n∑
k=1

Dk .

Definition 6.3.1. Let (Mn)n≥0 be a martingale with respect to a process (Xn)n≥0.

A sequence of random variables (Hn)n≥1 is called a predictable process if, for

each n ≥ 1, Hn is a function of X0, ..., Xn−1.

For n ≥ 1, we can think of the random variable Hn as representing the stake the gambler

puts on Game n, knowing the outcomes of Games 1, ..., n− 1 and the original capital M0.

So Hn(Mn −Mn−1) = HnDn is the profit (or loss) of the gambler for the nth game, and

Cn = M0 +
n∑
k=1

HnDn

is the total capital of the gambler immediately after the nth game.

Notation: We will write

(M ·H)n = M0 +
n∑
k=1

HkDk ,

and

(M ·H) = M0 +
∞∑
k=1

HkDk .

Definition 6.3.2. The process (M · H)n, n ≥ 0, is called the martingale trans-

form or discrete-time stochastic integral of (Mn)n≥0 by (Hn)n≥1.

Proposition 6.3.1. Let (Mn)n≥0 be a martingale and (Hn)n≥1 a predictable process.

If there exists K0 > 0 such that |Hn| ≤ K0 for all n ≥ 1, then

(M ·H)n, n ≥ 0

is a martingale.
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Proof. Clearly, (M ·H)n = M0 +
∑n

k=1HkDk is measurable with respect to σ(X0, ..., Xn)

for all n ≥ 0. We also have

E(|(M ·H)n|) ≤ E

[
|M0|+

n∑
k=1

|Hk| |Dk|

]
≤ E(|M0|) +

∑n
k=1K0 (|Mn|+ |Mn−1|) <∞ .

Furthermore,

E((M ·H)n |X0, ..., Xn−1) = E

(
M0 +

n∑
k=1

Hk (Mk −Mk−1) |X0, ..., Xn−1

)

= M0 +
n−1∑
k=1

Hk (Mk −Mk−1) +Hn E(Mn −Mn−1 |X0, ..., Xn−1)

= M0 +
n−1∑
k=1

Hk (Mk −Mk−1) +Hn 0 = (M ·H)n−1

which proves that (M ·H)n, n ≥ 0, is a martingale.

As a corollary, we can recover part (a) from the Optional Stopping Theorem.

Corollary 6.3.2. Let (Mn)n≥0 be a martingale and T a stopping time. Then for

all n0 ∈ N,

E(MT∧n0) = E(M0) .

In particular, if T is bounded, we have E(MT ) = E(M0).

Proof. Let (Hn)n≥1 be the process defined by

Hn = 1{T≥n} =

{
1 if T ≥ n

0 if T < n .

Since the event {T = n} ∈ σ(X0, ..., Xn), the event

{T ≥ n} =
n−1⋂
k=0

{T = k}c

and therefore

{T ≥ n} ∈ σ(X0, ..., Xn−1) .

Thus (Hn)n≥1 is a predictable process. Note that

(H ·M)n0 = M0 +

n0∑
k=1

1{T≥n0}(Mk −Mk−1)

= M0 +

T∧n0∑
k=1

(Mk −Mk−1)

= MT∧n0 .
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Since (H ·M)n is a martingale, we have E((H ·M)n0) = E((H ·M)0) = E(M0), and so

we arrive at

E(MT∧n0) = E(M0) .

6.4 Martingale Convergence Theorem

The Martingale Convergence Theorem is one of the main results in martingale theory.

It can be understood as the probabilistic counterpart to the convergence of a bounded,

non-decreasing sequence of real numbers. The theorem is very useful in applications. We

state the theorem but do not include its proof (which requires tools outside the scope of

this book). For a reference see [36].

Theorem 6.4.1 (Martingale Convergence Theorem). Let (Mn)n≥0 be a submartin-

gale with respect to (Xn)n≥0. If supn E(|Mn|) <∞, then with probability 1,

lim
n→∞

Mn = M∞ (6.7)

exists. Furthermore, the limit M∞ is finite with probability 1, and E(|M∞|) <∞.

Notice that from (6.7), the rest of the statement of Theorem 6.4.1 follows from Fatou’s

Lemma (see Appendix C): We have

E(|M∞|) = E(lim inf
n→∞

|Mn|) ≤ lim inf
n→∞

E(|Mn|)

≤ sup
n
E(|Mn|) <∞ ,

and so P(−∞ < M∞ <∞) = 1.

Corollary 6.4.2. Let (Mn)n≥0 be a non-negative supermartingale with respect to

(Xn)n≥0. Then with probability 1,

lim
n→∞

Mn = M∞

exists and is finite, and E(M∞) ≤ E(M0) <∞.

Proof. Since (Mn)n≥0 is a supermartingale, the process (−Mn)n≥0 is a submartingale.

Furthermore,

E(Mn) = E(| −Mn|) ≤ E(M0) <∞ for all n ≥ 0 ,

and so the Martingale Convergence Theorem applies to (−Mn)n≥0.
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6.5 Transience/Recurrence of MCs via martingales

Definition 6.5.1. Let (Xn)n≥0 be a Markov chain with discrete state space S and

one-step transition probabilities Pxy, x, y ∈ S. A function f on S is called har-

monic at x if

f(x) =
∑
y∈S

Pxyf(y) . (6.8)

We say f is harmonic on S if f is harmonic at x for all x ∈ S.

If “=” in (6.8) is replaced by “≤” (resp. by “≥”), we say f is subharmonic (resp.

superharmonic) at x.

Recall that not every martingale is a Markov chain, and not every Markov chain is a

martingale. The following proposition gives a class of martingales derived from Markov

chains via harmonic functions.

Proposition 6.5.1. Let (Xn)n≥0 be a Markov chain with discrete state space S.

(a) Let f be a bounded harmonic function on S. Then (f(Xn))n≥0 is a martingale

with respect to (Xn)n≥0.

(b) Conversely, if (Xn)n≥0 is irreducible and f a function on S such that

(f(Xn))n≥0 is a martingale with respect to (Xn)n≥0, then f is harmonic on S.

Proof. (a) Clearly, f(Xn) satisfies part (a) of Definition 6.1.1. Since f is bounded,

E(|f(Xn)|) <∞. By the Markov property,

E(f(Xn+1) |X0 = x0, X1 = x1, ..., Xn = x) = E(f(Xn+1) |Xn = x)

and, since f is harmonic,

E(f(Xn+1) |Xn = x) =
∑
y∈S

Pxyf(y) = f(x) .

So E(f(Xn+1) |X0, X1, ..., Xn) = f(Xn).

(b) Conversely, let f be a function on S such that (f(Xn))n≥0 is a martingale with respect

to (Xn)n≥0. For any x ∈ S, there exists an n ≥ 0 such that P(Xn = x) > 0. We then have

f(x) = E(f(Xn+1) |Xn = x) =
∑
y∈S

Pxyf(y) .

This shows that f is harmonic at x.
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More generally, we can show that if the state space S is finite and f is a right eigenvector

of the transition matrix P corresponding to eigenvalue λ 6= 0, then (f(Xn)/λn)n≥0 is a

martingale with respect to (Xn)n≥0. See Exercise 6.5.

Similarly to the above, we can show that a bounded subharmonic (resp. superharmonic)

function defines a submartingale (resp. supermartingale) (f(Xn))n≥0. And vice versa,

if (f(Xn))n≥0 is a submartingale (resp. supermartingale), then f must be subharmonic

(resp. superharmonic).

Theorem 6.5.2. Let (Xn)n≥0 be an irreducible Markov chain with discrete state

space S. If the Markov chain is recurrent, then (Xn)n≥0 has no nonnegative super-

harmonic or bounded subharmonic functions except for the constant functions.

Proof. Let f be a nonnegative superharmonic (resp. bounded subharmonic ) function

for the Markov chain. It follows that (f(Xn))n≥0 is a nonnegative supermartingale (resp.

bounded submartingale). By the Martingale Convergence Theorem, with probability 1,

the process (f(Xn))n≥0 converges to a finite random variable M∞. But since (Xn)n≥0 is

recurrent, with probability 1, the Markov chain visits every state x ∈ S infinitely often.

Thus we must have M∞ = f(x) for all x ∈ S. It follows that f must be constant on S.

Theorem 6.5.2 gives a criterion for transience for a Markov chain:

Proposition 6.5.3. Let (Xn)n≥0 be an irreducible Markov chain with discrete state

space S. Choose a state x0 ∈ S. Then (Xn)n≥0 is transient if and only if there

exists a bounded non-constant function f on S \ {x0} with the property

f(x) =
∑
y 6=x0

Pxyf(y) for x 6= x0 . (6.9)

Proof. Assume (Xn)n≥0 is transient and consider the function f on S defined by

f(x) =

{
P(T x0 =∞|X0 = x) for x 6= x0

0 for x = x0 .

Because of transience, f is not equal to zero on S \ {x0}. Using a first-step analysis, we

have

f(x) =
∑
y 6=x0

Pxyf(y) for x 6= x0 .
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and so (6.9) holds. Conversely, assume (6.9) holds. Let ã =
∑
y∈S

Px0yf(y). If ã ≥ 0,

then we define f(x0) = 0 which makes f subharmonic. (If ã < 0, then we work with the

function −f instead.) Clearly f is bounded on S. Assume (Xn)n≥0 is recurrent. Then,

by Theorem 6.5.2, f is constant and therefore, here, equal to zero. But this contradicts

our assumption that f is non-constant on S \{x0}. Hence (Xn)n≥0 must be transient.

Example 6.5.1 (Simple random walk on N0 with reflecting boundary at 0). The state

space is S = N0. Let 0 < p < 1, and set q = 1− p. The transition probabilities are

Px,x+1 = p for x ≥ 0

Px,x−1 = q for x > 0

P00 = q .

Figure 6.1 shows the transition graph. Clearly, this is an irreducible Markov chain.

10 2 3q

p

q

p p

q q

p

q

Figure 6.1

With x0 = 0, (6.9) yields the system of equations

f(1) = pf(2)

f(2) = qf(1) + pf(3)

f(3) = qf(2) + pf(4)
...

f(n) = qf(n− 1) + pf(n+ 1)
...

We can set f(1) = 1. This yields f(2) = 1/p. We rewrite the second equation in the

above system as

q[f(2)− f(1)] = p[f(3)− f(2)] ,

which yields (
q

p

)2

= f(3)− f(2) .

By induction, (
q

p

)n
= f(n+ 1)− f(n) for n ≥ 1 .
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We set f(0) = 0 and compute

f(1) = 1

f(2) = 1/p

f(3) = 1/p+ (
q

p
)2

...

f(n) = 1/p+
n−1∑
k=2

(
q

p
)k

...

From the above we see that the function f is bounded and non-constant if and only if

p > q. Thus simple random walk on the nonnegative integers with reflecting boundary at

0 is transient if and only if p > q. �

Example 6.5.2 (Simple random walk on Z). We now use the result from Example 6.5.1

to prove that simple (unrestricted) random walk on Z is transient if and only if p 6= q. If

p > q, then use the above computed function f from Example 6.5.1 and extend it to a

function on all of Z by setting f(x) = 0 for x ≤ 0. If p < q, then we show by a very similar

argument that simple random walk on the negative integers with reflecting boundary at

0 is transient. In this case, extent the analogous function f on the negative integers to

a function on all of Z by setting f(x) = 0 for x ≥ 0. If p = q = 1
2
, then the system

(6.9) does not yield a bounded non-constant function f on the positive integers (or on

the negative integers). Hence, by Proposition 6.5.3, simple symmetric random walk on Z
is recurrent. �

Example 6.5.3 (Criterion for transience for general birth/death chains). We assume

S = N0 and the process is irreducible. The transition probabilities are

Px,x+1 = px for x ≥ 0

Px,x−1 = qx for x > 0

Px,x = rx for x ≥ 0

with px + qx + rx = 1 and px, qx > 0 for all x. Figure 6.2 shows the transition graph.

Equations (6.9) read

f(1) = p1f(2) + r1f(1)

f(2) = q2f(1) + p2f(3) + r2f(2)

f(3) = q3f(2) + p3f(4) + r3f(3)
...

f(n) = (qnf(n− 1) + pnf(n+ 1) + rnf(n)
...
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10 2 3r0

p0

q1

p1 p2

q2 q4

p3

q3

r1 r2 r3

Figure 6.2

Setting f(1) = 1, we get from the first equation f(2) = 1−r1
p1

. The rest of the equations

can be written as

qn [f(n)− f(n− 1)] = pn [f(n+ 1)− f(n)] for n ≥ 2 ,

from which we compute by induction,

f(n+ 1)− f(n) =
n∏
j=1

qj
pj

for n ≥ 1 .

This yields

f(n) =
1− r1

p1

+
n−1∑
k=2

(
k∏
j=1

qj
pj

)
for n ≥ 3 .

We conclude that the birth/death chain on N0 is transient if and only if

∞∑
k=2

(
k∏
j=1

qj
pj

)
<∞ .

�

6.6 Applications

6.6.1 Waiting times for sequence patterns

Consider a sequence (Xn)n≥1 of i.i.d. discrete random variables taking values in a finite

set V . Suppose we are given a pattern of length k, i.e., a fixed sequence (x1, x2, ..., xk)

of elements in V . If we observe the outcomes of the random sequence (Xn)n≥1, one at

a time, how long on average do we have to wait until we see the pattern (x1, x2, ..., xk)

appear for the first time? As an example, consider V = {0, 1, 2, 3} and let T be the first

time at which we see the pattern (0, 2, 3, 3). If we observe the outcomes

2, 3, 2, 0, 0, 1, 3, 1, 0, 0, 0, 3,

pattern︷ ︸︸ ︷
0, 2, 3, 3, ...
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then T = 16. We could model this type of problem as an absorbing Markov chain (Yn)n≥0

whose state space S consists of all k-length patterns from V . The unique absorbing state

is (x1, x2, ..., xk). We start by generating the initial X1, ..., Xk. The resulting pattern is

Y0, and thus the initial distribution is uniform distribution on S. At time n > 0, Yn is the

most recent k-length pattern Xn+1, Xn+2, ..., Xk+n. We can set up the transition matrix

for (Yn)n≥0 and from it compute the expected time E(T ) until absorption. Since (Yn)n≥0

has finite state space and is irreducible, E(T ) <∞.

Here we present an alternative approach by introducing a martingale and making use of

the Optional Stopping Theorem. Imagine a sequence of gamblers, each starting with an

initial capital of $1 and playing a sequence of fair games until their first loss, upon which

the gambler leaves the casino. Let (x1, ..., xk) be the desired pattern in the sequence of

i.i.d. random variables (Xn)n≥1. The game proceeds as follows. Gambler j enters the

game at time j and bets his $1 on x1 in a fair game. If he loses the bet, he quits (and

has lost $1). If he wins, he continues with game j + 1. He bets his total capital (that is,

his initial $1 plus his winnings from game j) on x2. If he loses game j + 1, he quits the

game with a net loss of $1. If he wins, he moves on to game j + 2 betting on x3 with his

total capital ($1 plus his winnings from games j and j + 1), and so on. In the meantime,

in Game j + 1, Gambler j + 1 has entered and bets her initial $1 on x1 in game j + 1. If

she loses this bet, she quits. If she wins this bet, she continues on to game j + 2 at which

she bets her total capital on x2, and so on. The game ends at time T .

Here is a concrete example. Consider a sequence of i.i.d. fair coin tosses X1, X2, ..... Let

D (D for duration of the game) be the first time at which we see the pattern THT for the

first time. If, for example, the tosses result in ω = TTHHTHT we have D(ω) = 7. What

is E(D)? Since p = q = 1
2
, each game has payoff equal to the gamblers stake. Gambler 1

starts with Game 1 and bets $1 on T. If he wins, his fortune is now $2. He moves on to

Game 2 and bets $2 on H. If he wins, he has now $4 and moves on to Game 3, at which

he bets $4 on T. If he wins Game 3, we have T = 3, and the casino starts a new game.

Gambler 1 has made a net profit of $7. However, if Gambler 1 loses anytime at or before

time 3, he quits the game with a loss of $1.

Let Wn be the total winnings of the casino by time n. Since all bets are fair, (Wn)n≥1 is

a martingale. The random time D is a stopping time for (Wn)n≥1. As mentioned above,

E(D) < ∞. Furthermore it is clear that |Wn −Wn−1| is bounded for all n ≥ 2, since at

any given time n at most k (where k is the length of the pattern sequence) players are in

the game, and the size of their bets is uniformly bounded. It follows that part (c) of the

Optional Stopping Theorem applies. We have

E(WD) = E(W1) = 0 .

Here is a summary for the game that resulted in D = 7 with ω = TTHHTHT :
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Flip T T H H T H T

Player # entering the game 1 2 3 4 5 6 7

Total player payoff −$1 −$1 −$1 −$1 $7 −$1 $1

The desired pattern HTH has length k = 3. So only the last 3 gamblers in the game

can possibly win (and some of them will lose $1). All gamblers who entered before Game

D − k + 1 have lost $1.

Example 6.6.1. A sequence of i.i.d. Bernoulli flips with a fair coin. The game stops as

soon as the pattern THT has appeared for the first time. Denote this random time by D.

Game # 1 to (D − 3) D − 2 D − 1 D

Flip · · · T H T

Player # entering the game 1 to (D − 3) D − 2 D − 1 D

Total player payoff −$1 each $7 −$1 $1

Here WD = D − 3− 7 + 1− 1. Since E(WD) = 0 = E(D)− 10, we get

E(D) = 10 .

�

We now turn to more general case of i.i.d. (possibly) biased coin flips. All games are

still fair games. Note that this means that the gambler either loses $1 (at which point he

quits the game), or his fortune grows by a factor of p−1 (in which case he continues the

game and bets his total fortune on the next game). Indeed, say the gambler’s fortune is

currently $x. He bets $x on the next game in which he wins with probability p. Since

the game is fair, if he wins, the casino has to pay him $y which is computed from

−x(1− p) + yp = 0 .

If the gambler wins, his new fortune is therefore $(x+ y) = $xp−1. As before, we assume

that the gambler starts with an initial fortune of x = $1.

Example 6.6.2. Consider a sequence of i.i.d. biased coin flips with P(H) = p and

P(T ) = 1 − p. Assume 0 < p < 1, and set q = 1 − p. The game stops as soon as the

pattern THTHT has appeared for the first time. Denote this random time by D.

Game # 1 to (D − 5) D − 4 D − 3 D − 2 D − 1 D

Flip · · · T H T H T

Player # 1 to (D − 5) D − 4 D − 3 D − 2 D − 1 D

Player payoff −$1 each $(p−2q−3 − 1) −$1 $(p−1q−2 − 1) −$1 $(q−1 − 1)
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Here

WD = (D − 5)− (p−2q−3 − 1) + 1− (p−1q−2 − 1) + 1− (q−1 − 1) ,

and so

E(D) = p−2q−3 + p−1q−2 + q−1 .

�

Example 6.6.3. As in Example 6.6.2, consider a sequence of i.i.d. coin flips with P(H) =

p with 0 < p < 1. The expected time E(D) until we see n heads in a row is

E(D) = (
1

p
)n + (

1

p
)n−1 + · · ·+ 1

p
=

1

p

(1
p
)n − 1

1
p
− 1

=
1− pn

(1− p)pn
.

As a specific numerical example, for a fair coin with p = 1
2
, the expected time E(D) until

we see n = 5 heads in a row is E(D) = 62. �

6.6.2 Gambler’s ruin, revisited

We can solve the gambler’s ruin problem from Section 4.4 with the use of the OST.

Fair game.

Consider simple symmetric random walk (Sn)n≥0 on Z with Sn =
∑n

k=0Xk with X0 = x

and i.i.d. Xk ∼ Unif({−1, 1}) for k ≥ 1. Let a < x < b. From Example 6.1.2, we

know that (Sn)n≥0 is a martingale. The first time T = T {a,b} the random walk hits one

of the boundary points a or b is a stopping time. We have P(T < ∞) = 1. Clearly,

P (|Sn| ≤ K0) = 1 for n ≤ T and K0 = max{(|a|, |b|}. Therefore conditions (b) of the

Optional Stopping Theorem are satisfied, and we have

E(ST ) = E(S0) = x .

Using the notation rx = Px(T a < T b), we get

rxa+ (1− rx)b = x ,

from which we compute

rx =
b− x
b− a

(6.10)

and

Px(T b < T a) = 1− rx =
x− a
b− a

.
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Note that since (Sn)n≥0 is a martingale and a Markov chain on finite state space S =

{a, a + 1, ..., b}, the gambler’s ruin probabilities rx follow from (6.4) in Example 6.1.5

as well. We will now compute E(T ). From Example 6.1.3, we know that the process

Mn = (Sn)2 − nσ2 for n ≥ 0 defines a martingale with respect to (Xn)n≥0. Here σ2 = 1.

We will show that conditions (c) in the OST apply to (Mn)n≥0, and then use the OST

to compute E(T ). Condition E(T ) < ∞ holds since for any irreducible, finite state

Markov chain, the expected hitting time of a subset of states, here {a, b}, is finite (recall

Proposition 2.1.1). The expression |Mn−Mn−1| = |S2
n− n− (S2

n−1− (n− 1))| is equal to

|2Xn(X0 + · · ·Xn−1) +X2
n − 1| .

Thus

E(|Mn −Mn−1| |X0, ..., Xn−1 ) = E(|2Xn(X0 + · · ·Xn−1) +X2
n − 1| |X0, ..., Xn−1)

≤ 2E(|Xn||X0 + · · ·Xn−1| |X0, ..., Xn−1 ) + E(|X2
n − 1| |X0, ..., Xn−1 )

= 2|X0 + · · ·Xn−1|E(|Xn|) = 2|X0 + · · ·Xn−1| .

For n ≤ T , the last expression is bounded above by K0 = 2 max{|a|, |b|}, and so conditions

(c) of the OST are satisfied for (Mn)n≥0, and we have

E(MT ) = E(S2
T )− E(T ) = E(M0) = x2 . (6.11)

From (6.11) and (6.10), we have

x2 = a2 b− x
b− a

+ b2 x− a
b− a

− E(T ) ,

from which we compute

E(T ) = a2 b− x
b− a

+ b2 x− a
b− a

− x2

=
(b− x)(x− a)(b− a)

(b− a)
= (b− x)(x− a) ,

which confirms our result from Section 4.4.

Biased game.

We now consider biased simple random walk (Sn)n≥0 on Z starting at x. Recall Example

6.1.4. The process (Mn)n≥0 defined by Mn = ( q
p
)Sn is a martingale. Let a < x < b. As for

the symmetric case, the time T = T {a,b} until the walk hits one of the boundary points a

or b is a stopping time, and P(T < ∞) = 1. We also have P(|Mn| ≤ K0) = 1 for n ≤ T
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and K0 = max{( q
p
)a, ( q

p
)b}. Thus conditions (b) of the Optional Stopping Theorem are

satisfied, and

E(MT ) = E(M0) = (
q

p
)x .

Setting rx = Px(T a < T b), we get

E(MT ) = rx(
q

p
)a + (1− rx)(

q

p
)b = (

q

p
)x ,

from which we compute

rx

(
(
q

p
)a − (

q

p
)b
)

= (
q

p
)x − (

q

p
)b

and

rx =
( q
p
)x − ( q

p
)b

( q
p
)a − ( q

p
)b

=
( q
p
)x−a − ( q

p
)b−a

1− ( q
p
)b−a

. (6.12)

For the computation of E(T ), we apply the OST to the martingale (Yn)n≥0 defined by

Yn = Sn − n(p− q) (and for which we verify that conditions (c) of the OST hold). Thus

we have

E(YT ) = E(ST )− E(T )(p− q) = E(Y0) = x .

This yields

a rx + b (1− rx)− x = (p− q)E(T )

from which, using (6.12), we compute

E(T ) =
a− x
p− q

+

(
b− a
p− q

)
1− ( q

p
)x−a

1− ( q
p
)b−a

which confirms our results from Section 4.4.

6.6.3 Branching process, revisited

We return to the Galton-Watson branching process (Xn)n≥0 from Chapter 5. It is deter-

mined by an N0-valued offspring random variable Z. At each time interval, each individual

in the current generation gives rise to a number of offspring according to the distribu-

tion of Z. It is assumed that all individuals reproduce independently. For simplicity, we

assume that the branching process (Xn)n≥0 starts with one individual. Then the size of

Generation 1 is X1 ∼ Z, and the size of Generation n is

Xn = Z
(n)
1 + · · ·+ Z

(n)
Xn−1

where Z
(n)
1 , Z

(n)
2 , ..., n ≥ 1, are i.i.d. random variables with Z

(n)
k ∼ Z for all n, k ≥ 1.
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To avoid trivial cases for the branching process, we assume P(Z ≥ 2) > 0. Furthermore,

since we will be interested in the probability of ultimate extinction of such a process, we

assume P(Z = 0) > 0. Let m = E(Z). We assume 0 < m <∞.

The process (Mn)n≥0 defined by

Mn = Xn/m
n

is a non-negative martingale with respect to (Xn)n≥0. Indeed,

E(|Mn|) =
1

mn
E(Xn) = 1 <∞

and

E(Mn+1 |X0, ..., Xn) =
1

mn+1
E(Xn+1 |Xn) =

1

mn+1
Xnm = Mn .

By the Martingale Convergence Theorem, with probability 1, the limit

M∞ = lim
n→∞

Mn

exists and is finite. We can now ask about the distribution of M∞. Since all states for the

branching process (Xn)n≥0 lead into state 0, all states other than state 0 are transient. It

follows that, with probability 1,

lim
n→∞

Xn ∈ {0,∞} .

For the subcritical and critical cases (i.e., for the case m ≤ 1), we have

lim
n→∞

Xn = 0

with probability 1. Since the state space is discrete, this means that with probability 1,

for any trajectory of the branching process, there exists an n0 such that Xn = 0 for all

n ≥ n0. It follows that for if m ≤ 1, with probability 1,

lim
n→∞

Mn = M∞ = 0

Note that in this case we have

E(M∞) = 0 6= lim
n→∞

E(Mn) = 1 .

The supercritical case m > 1 presents interesting questions about the growth rate of

the population size for the branching process. In this case the event {M∞ > 0}
may have positive probability, depending on properties of the offspring distribution. Note

that since Mn = Xn/m
n, on the event {M∞ > 0}, the branching process (Xn)n≥0 will have

exponential growth rate due to the a.s. finiteness of M∞. Let e0 denote the probability of
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ultimate extinction of the population, and recall that in the supercritical case, 0 < e0 < 1.

Thus we have

P(M∞ = 0) ≥ e0 .

The following theorem explains the growth rate of the population size for a supercritical

branching process. The proof of the theorem lies outside the scope of this text. For a

reference see [4].

Theorem 6.6.1 (Kesten-Stigum). Let (Xn)n≥0 be a supercritical branching process

with X0 = 1. Let Z be its offspring random variable and assume P(Z = k) 6= 1 for

all k ∈ N0. Let e0 be its extinction probability. The following are equivalent:

(a) E(Z lnZ) <∞,

(b) P(M∞ = 0) = e0,

(c) E(M∞) = 1 .

If E(Z lnZ) =∞ , then P(M∞ = 0) = 1 , and thus E(M∞) = 0 .

Theorem 6.6.1 settles the question about the conditions under which a supercritical

branching process (Xn)n≥0 has exponential growth rate: Exponential growth rate of the

population happens precisely when E(Z lnZ) < ∞, and in this case it happens with

probability 1− e0.

When E(Z lnZ) = ∞, then, here also, the population will not die out and instead grow

to infinity with probability 1 − e0. But the growth rate of the population size will be

sub-exponential.

6.6.4 Pólya’s Urn, revisited

Recall Pólya’s urn model from Section 1.5. An urn contains b blue balls and g green balls.

At each time step, a ball is drawn uniformly at random from the urn, its color noted, and

then together with c additional balls of the same color, put back into the urn. Note that

the number of balls in the urn increases by c with each step.

In the following, for simplicity, we will take c = 1. Let Xn denote the number of blue

balls in the urn at time n, and consider the process Mn = Xn/(b+ g+ n) which gives the

fraction of blue balls in the urn after n steps. The process (Mn)n≥0 is a martingale with
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respect to (Xn)n≥0. Indeed, the random variables Mn are uniformly bounded by 1, and

E(Mn+1 |X0, ..., Xn) = (b+ g + n+ 1)−1E(Xn+1 |Xn)

= (b+ g + n+ 1)−1

[
Xn(1− Xn

b+ g + n
) + (Xn + 1)

Xn

b+ g + n

]
= (b+ g + n+ 1)−1

[
Xn +

Xn

b+ g + n

]
=

Xn

b+ g + n
= Mn .

We can apply the Martingale Convergence Theorem to (Mn)n≥0. Thus there exists a

random variable M∞ ≤ 1 such that with probability 1,

lim
n→∞

Mn = M∞ .

By the Bounded Convergence Theorem (see Appendix C), we have

lim
n→∞

E(Mn) = lim
n→∞

E(M0) =
b

b+ g
= E(M∞) .

We will now show that the random variable M∞ has a beta distribution Beta(b, g). Recall

the density f(x) for a Beta(b, g) distribution:

f(x) =
Γ(b+ g)

Γ(b)Γ(g)
xb−1(1− x)g−1 for 0 < x < 1

and 0 elsewhere. Here Γ(y) is the Gamma function defined by

Γ(y) =

∫ ∞
0

xy−1e−x dx .

Special values of the Gamma function are Γ(n) = (n− 1)! for all n ∈ N. A special case of

the beta distribution is Beta(1, 1) = Uniform(0, 1).

We introduce a sequence of Bernoulli random variables (Yn)n≥1 defined by Yn = 1 if the nth

ball drawn is blue and Yn = 0 if the nth ball drawn is green. In Section 1.5, we showed

that the random variables Yn are identically distributed (but not independent!) with

P(Yn = 1) = b
b+g

. By de Finetti’s Theorem, if we choose a success probability p according

to a beta distribution Beta(b, g) on [0, 1], then conditional on p, the sequence (Yn)n≥1 is

i.i.d Bernoulli(p). Thus, conditionally on p, by the Strong Law of Large Numbers,

Ȳn =
1

n
(Y1 + · · ·+ Yn)

n→∞−−−−→ p a.s. ,
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and therefore,

Ȳn =
1

n
(Y1 + · · ·+ Yn)

n→∞−−−−→ Y a.s.,

where Y ∼ Beta(b, g). Note that

Mn =
b+ (Y1 + · · ·+ Yn)

b+ g + n
=

b+ Ȳnn

b+ g + n
,

and thus

lim
n→∞

Mn = lim
n→∞

b+ Ȳnn

b+ g + n
= lim

n→∞
Ȳn = Y a.s. .

This proves that

M∞ ∼ Beta(b, g) .

Since Beta(1, 1) ∼ Uniform(0, 1), we have the following: If the process starts with one bue

ball and one green ball, in the long run, the fraction of blue balls in Pólya’s urn settles

down to a fraction that is uniformly distributed on the unit interval.

Exercises

Exercise 6.1. Consider a martingale (Mn)n≥0 with respect to (Xn)n≥0 and nonnegative

integers

n1 < n2 < · · · < nk < nk+1 .

Show that

E(Mnk+1
|Xn1 , ..., Xnk) = Mnk .

Exercise 6.2. Consider a submartingale (Mn)n≥0 with respect to (Xn)n≥0. Show that

for all n, k ≥ 0,

E(Mn+k |X0, ..., Xn) ≥Mn

and

E(Mn+k) ≥ E(Mn) .

[If (Mn)n≥0 is a supermartingale with respect to (Xn)n≥0, then each of the two inequalities

is reversed.]

Exercise 6.3. A sequence of i.i.d. Bernoulli flips with a fair coin. Slightly modify the

game from Example 6.6.1 by considering the pattern HTT. What is the expected waiting

time E(D) until we see the pattern HTT for the first time? Does it differ from the result

in Example 6.6.1?
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Exercise 6.4. Consider a sequence of i.i.d. coin tosses with a fair coin, i.e. for each coin

toss we have P(H) = P(T ) = 1
2
. What is the expected number of tosses until we see the

pattern HHHH for the first time? Use martingale theory to answer this question.

Exercise 6.5. Consider a Markov chain (Xn)n≥0 with finite state space S and transition

matrix P. Show that if f is a right eigenvector of P corresponding to eigenvalue λ 6= 0,

then (f(Xn)/λn)n≥0 is a martingale with respect to (Xn)n≥0.

Exercise 6.6. Consider a Markov chain (Xn)n≥0 on discrete state space S and assume

a ∈ S is an absorbing state. Consider the hitting (or first return) time T a ≥ 1, and define

f(x) = Px(T a <∞)

for x ∈ S. Show that (f(Xn))n≥0 is a martingale with respect to (Xn)n≥0.

Exercise 6.7. Consider a random variable Z and a stochastic process (Xn)n≥0, both

defined on the same probability space Ω. Furthermore, assume E(|Z|) < ∞. Show that

the process (Yn)n≥0 defined by

Yn = E(Z |X0, X1, ..., Xn)

for n ≥ 0 is a martingale with respect to (Xn)n≥0.

Exercise 6.8. Let X1, X2, ... be i.i.d. random variables with P(X1 = 1) = 3
5
, P(X1 =

0) = 1
5
, P(X1 = −2) = 1

10
, and P(X1 = −3) = 1

10
. Consider random walk (Sn)n≥0 with

Sn =
∑n

i=1 Xi for n ≥ 1 and S0 = 0. Furthermore, consider the hitting time

T = min{n : Sn ≥ 20}.

Use the Optional Stopping Theorem (justify that the conditions are satisfied!) to compute

E(T ). (Hint: Theorem 4.3.2 may be useful.)

Exercise 6.9. Let X1, X2, ... be i.i.d. random variables with P(X1 = 1) = P(X1 = −1) =

P(X1 = 0) = 1
3
. Consider random walk (Sn)n≥0 with S0 = 0 and Sn =

∑n
i=1 Xi. Show

that the process (Yn)n≥0 defined by

Yn = 3 sin
(π

2
Sn

)
for n ≥ 0 is a martingale with respect to (Xn)n≥0.

Exercise 6.10. Consider simple (symmetric or biased) random walk (Sn)n≥0 on Z and

fix n > 0. Show that the process (Mk)0≤k≤n defined by

Mk =
Sn−k
n− k

is a martingale with respect to itself. (Hint: Make use of the result from Exercise 4.9.)



Exercises 210

Exercise 6.11 (The ballot problem, revisited). Let c > d > 0. Consider an election

between two candidates, Candidate 1 and Candidate 2, in which Candidate 1 receives c

votes and Candidate 2 receives d votes. Corollary 4.5.7 states that the probability that,

throughout the election, Candidate 1 was always ahead of Candidate 2 is

c− d
c+ d

.

Use the martingale from Exercise 6.10 (for a suitably chosen n) and the stopping time

T = min{T 0, n− 1} to re-prove this result.

Exercise 6.12. Let x ∈ N. A gambler starts with a fortune of $x and makes a sequence

of $1 bets against the house which has unlimited funds. Let 0 < p < 1 and p 6= 1
2
.

Assume that with each bet, the gambler either wins $1 with probability p or loses $1 with

probability 1 − p. The game ends at time T 0 when the gambler’s fortune has reached

$0 (bankruptcy). Use the Martingale Convergence theorem to compute the probability

P(T 0 < ∞), i.e. the probability that the gambler will eventually go bankrupt. (Hint:

Work with the martingale from Example 6.1.4 and distinguish cases.)

Exercise 6.13. Consider a Galton-Watson branching process (Xn)n≥0 with offspring dis-

tribution µ for which we assume µ(0) > 0 and µ(0)+µ(1) < 1. Let m denote the expecta-

tion of µ. We have shown in Section 6.6.3 that the process (Mn)n≥0 with Mn = Xn/m
n is

a martingale with respect to (Xn)n≥0. Use the Martingale Convergence theorem to prove

that if m ≤ 1, then with probability 1, the population will ultimately become extinct,

that is, with probability 1,

lim
n→∞

Xn = 0.

Exercise 6.14. Consider a Galton-Watson branching process (Xn)n≥0 with offspring dis-

tribution µ for which we assume µ(0) > 0 and µ(0) + µ(1) < 1. Let m denote the

expectation of µ, and assume m > 1 (the process is supercritical).

(a) The probability generating function f of µ has a unique fixed point e0 in the open

interval (0, 1) (recall Figure 5.2). Consider the process (Mn)n≥0 defined by Mn =

eXn0 . Show that (Mn)n≥0 is a martingale with respect to (Xn)n≥0.

(b) Use the Martingale Convergence theorem to re-prove that e0 is the probability

of ultimate extinction for the branching process (Xn)n≥0. (Hint: Here, taking

lim
n→∞

E(Mn) = E(M0) = E(M∞) is justified by the Dominated Convergence the-

orem; see Theorem C.3.3.)

Exercise 6.15. Recall Pólya’s urn model discussed in Section 6.6.4. We starts with b

blue balls and g green balls. Let Xn denote the number of blue balls in the urn after n

steps.
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(a) If, at each step, instead of one ball we add c > 1 balls of the same color that was

drawn, is the fraction of red balls in the urn after n steps still a martingale with

respect to (Xn)n≥0?

(b) Further modify the urn process by not only adding c ≥ 1 balls of the same color

that was drawn, but by also adding d ≥ 1 balls of the opposite color at each step.

Is now the fraction of blue balls in the urn after each step a martingale with respect

to (Xn)n≥0?

Exercise 6.16. Consider an urn that initially contains a number b of blue balls and

a number g of green balls, so in total n = b + g balls. We perform sampling without

replacement from this urn. Clearly, the probability of drawing a blue ball with the first

draw is b
b+g

. You play a game by which you choose a time T ∈ {0, 1, ...., n−1} and predict

that the (T + 1)th draw will yield a blue ball. If the (T + 1)th ball is indeed blue, you win

the game. The time T has to be a stopping time. So in making your choice of T , you are

allowed to use any information gained from observing the process up to that time. Is it

possible to devise a strategy for choosing T that increases your initial probability of b
b+g

of correctly predicting “blue” for the (T + 1)th draw?

Exercise 6.17. Recall that a function f : R→ R is called convex if

f(αx+ (1− α)y) ≤ αf(x) + (1− α)f(y)

for all x, y ∈ R and for all α ∈ [0, 1]. If “≤” is replaced by “≥” in the above inequality,

the function f is called concave. Consider a martingale (Xn)n≥0 and a function f on R
with E|f(Xn)| < ∞ for n ≥ 0. Show that if f is convex, then the process (f(Xn))n≥0 is

a submartingale, and if f is concave, then (f(Xn))n≥0 is a supermartingale.
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Reversibility

7.1 Time reversal of a Markov chain

Consider a positive recurrent (not necessarily irreducible) Markov chain (Xn)n≥0 with

state space S and a strictly positive stationary distribution π for the chain. Assume that

the Markov chain starts in π. Let Pxy for x, y ∈ S be the one-step transition probabilities

of the chain. Fix a time N > 0. The time reversed process (X̃n)0≤n≤N is defined by

X̃n = XN−n

for 0 ≤ n ≤ N . The time reversed process is also a Markov chain. Indeed, we have

P(X̃k+1 = y | X̃0 = x0, X̃1 = x1, ..., X̃k−1 = xk−1, X̃k = x) (7.1)

= P(XN−k−1 = y |XN = x0, Xn−1 = x1, ..., XN−k+1 = xk−1, XN−k = x)

=
P(XN−k−1 = y, XN−k = x, XN−k+1 = xk−1, ..., Xn−1 = x1, XN = x0)

P(XN−k = x, XN−k+1 = xk−1, ..., Xn−1 = x1, XN = x0)

=
π(y)Pyx P(XN = x0, Xn−1 = x1, ..., XN−k+1 = xk−1 |XN−k = x)

π(x)P(XN = x0, Xn−1 = x1, ..., XN−k+1 = xk−1 |XN−k = x)

=
π(y)

π(x)
Pyx .

The above shows that the conditional probabilities (7.1) for the time reversed process

are independent of the past of the trajectory (if we consider time k the present), that is,

independent of X̃n for n < k. Thus the time reversed process (X̃n)0≤n≤N is a Markov

chain, and its one-step and, by induction, its n-step transition probabilities are

P̃xy =
π(y)

π(x)
Pyx , and P̃ n

xy =
π(y)

π(x)
P n
yx for x, y ∈ S , n ≥ 1 .

212
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Note that in case (Xn)n≥0 is reducible, the transition probabilities P̃xy, x, y ∈ S, do not

depend on the particular choice of π (see Exercise 7.3). And if the original transition prob-

abilities Pxy, x, y ∈ S, define an irreducible Markov chain on S, the transition probabilities

P̃xy also define an irreducible Markov chain on S. Indeed, take any x, z ∈ S. Then either

Pzx > 0 or there exists n ≥ 2 and y1, ..., yn−1 ∈ S such that Pz,y1Py1,y2 · · ·Pyn−1,x > 0.

Hence we have

0 <
π(z)

π(y1)
Pz,y1

π(y1)

π(y2)
Py1,y2 · · ·

π(yn−1)

π(x)
Pyn−1,x = P̃y1,zP̃y2,y1 · · · P̃x,yn−1 ≤ P̃ n

x,z

which shows irreducibility of the Markov chain (X̃n)n≥0, which we refer to as the time

reversal of (Xn)n≥0. Furthermore (Xn)n≥0 and (X̃n)n≥0 have the same stationary

distribution π:∑
x∈S

π(x)P̃xy =
∑
x∈S

π(x)
π(y)

π(x)
Pyx = π(y)

∑
x∈S

Pyx = π(y) .

Note that the transition matrix for the time reversal chain is

P̃ = D−1PtD

where Pt denotes the transpose of P and D is the diagonal matrix D = diag(π(1), ..., π(n)).

Proposition 7.1.1. Let (Xn)n≥0 be an irreducible, positive recurrent Markov chain

with stationary distribution π, and assume X0 ∼ π. Consider its time reversal

(X̃n)n≥0 with X̃0 ∼ π. Then for all n ≥ 1,

(X0, X1, ..., Xn) ∼ (X̃n, ..., X̃1, X̃0) ,

that is, for all n ≥ 1 and for all xi ∈ S,

P(X0 = x0, X1 = x1, ..., Xn = xn) = P(X̃0 = xn, X̃1 = xn−1, ..., X̃n = x0)

The proof is straightforward verification.

Example 7.1.1 (Biased random walk on the discrete cycle). Consider random walk on

the discrete cycle Zd = {0, 1, ..., d− 1}. Let 0 < p < 1 and p 6= 1
2
. At each time, the walk

takes one step clockwise with probability p or one step counter-clockwise with probability

1− p. Thus the transition probabilities are

Pk,k+1 = p = Pd−1,0 for k = 0, 1..., d− 2, and

P0,d−1 = 1− p = Pk,k−1 for k = 1, 2, ..., d− 1
,
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and zero otherwise. The stationary distribution is uniform distribution on Zd. The time

reversed chain has transition probabilities

P̃k,k+1 = 1− p = P̃d−1,0 for k = 0, 1..., d− 2, and

P̃0,d−1 = p = P̃k,k−1 for k = 1, 2, ..., d− 1
,

and zero otherwise. We see that here the time reversal is random walk on Zd that takes

steps with “opposite bias” compared to the original chain. �

7.2 Reversible Markov chains

Markov chains for which the time reversal has the same transition probabilities as the

original chain often are of special interest. We call such Markov chains reversible.

Definition 7.2.1. Let (Xn)n≥0 be a Markov chain on (finite or countably infinite)

state space S. If there exists a positive probability measure π on S for which

π(x)Pxy = π(y)Pyx for all x, y,∈ S , (7.2)

we call the Markov chain reversible with respect to π. Equations (7.2) are called

the detailed balance equations.

Note that the detailed balance equations (7.2) are equivalent to the conditions

Pxy = P̃xy for all x, y ∈ S ,

and so, for a reversible Markov chain, we have

P = P̃ = D−1PtD

where Pt denotes the transpose of P and D = diag(π(1), ..., π(n)).

Lemma 7.2.1. If a Markov chain (Xn)n≥0 is reversible with respect to a positive

probability measure π, then π is a stationary distribution for the Markov chain.

Hence the Markov chain is positive recurrent.

Proof. Summing over x on both sider of Equation (7.2) yields∑
x∈S

π(x)Pxy =
∑
x∈S

π(y)Pyx = π(y)

which shows that π is a stationary distribution. The existence of a strictly positive

stationary distribution implies positive recurrence of the chain.
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By Proposition 7.1.1, for a reversible chain (Xn)n≥0 that starts in stationary distribution

π, for any n ≥ 1 and x0, x1, ..., xn ∈ S, we have

P(X0 = x0, X1 = x1, ..., Xn = xn) = P(X0 = xn, X1 = xn−1, ..., Xn = x0) ,

that is, we have equality of the joint distributions

(X0, X1, ..., Xn) ∼ (Xn, ..., X1, X0) .

Observing a reversible chain as it unfolds, we cannot tell, probabilistically speaking,

whether time runs forward or time runs backward.

Remark 7.2.2. Equations (7.2) often lead to a manageable recursion for the com-

putation of the stationary distribution π of an irreducible, positive recurrent, and

reversible Markov chain. However, if the Markov chain is not reversible (and of

course this applies to many Markov chains) and/or not positive recurrent, then the

system of equations (7.2) will not have a positive solution that can be normalized to

a probability distribution π on S.

Vice versa, equations (7.2) are often used to construct a Markov chain (i.e., its

transition probabilities) that has a desired stationary distribution π. This is relevant

for the construction of Markov chain Monte Carlo algorithms which are the subject

of Chapter 9.

Example 7.2.1. Biased random walk (with p 6= 1
2
) on the discrete cycle Zd is not re-

versible (see Example 7.1.1). Symmetric random walk (with p = 1
2
) on Zd is reversible.

�

Symmetric random walk on Zd is an example of a Markov chain that has a symmetric

transition matrix P. Any finite-state Markov chain with symmetric transition matrix P

is reversible with respect to uniform measure on its state space S.

Example 7.2.2 (Random walk on a weighted graph is reversible). Let G(V,E) be a

connected, finite graph and C : E → R+ a weight function defined on the edge set E.

We will write C(v, w) instead of C({v, w}). We have introduced random walk on G(V,E)

with weight function C in Section 1.5. Let C(v) =
∑
w:w∼v

C(v, w). Recall that for two

vertices v, w ∈ V , the one-step transition probability is defined by

Pv,w =
C(v, w)

C(v)
if w ∼ v ,
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and is zero otherwise. Let CG =
∑
w∈V

C(w). Consider the distribution π on V defined by

π(v) =
C(v)

CG
for v ∈ V .

Since
∑

v∈V
C(v)
CG

= 1, the distribution π is a probability distribution. We also verify that

the detailed balance equations hold for all v, w ∈ V :

C(v)

CG

C(v, w)

C(v)
=
C(w)

CG

C(w, v)

C(w)
.

This shows that π is the unique stationary distribution, and that random walk on the

weighted graph G(V,E) with weight function C is reversible. Since simple random walk

on a graph G(V,E) is a special case (corresponding to weight function C ≡ 1), simple

random walk on a graph is reversible. �

The following theorem gives an alternate criterion for reversibility of an irreducible Markov

chain. Note that it does not require knowledge of the stationary distribution.

Theorem 7.2.3 (Kolmogorov’s loop criterion). Let (Xn)n≥0 be an irreducible, pos-

itive recurrent Markov chain with state space S. Then (Xn)n≥0 is reversible if and

only if the product of the one-step transition probabilities along any finite loop is the

same as the product of the one-step transition probabilities along the reversed loop,

that is, if for any n ≥ 2 and any states i1, i2, ..., in ∈ S,

Pi1,i2Pi2,i3 · · ·Pin−1,inPin,i1 = Pi1,inPin,in−1 · · ·Pi2,i1 (7.3)

holds.

Proof. Assume (Xn)n≥0 is reversible. Then Pi,j = π(j)
π(i)

Pj,i for all i, j ∈ S. Replacing each

factor Pi,j on the left hand side of (7.3) with π(j)
π(i)

Pj,i yields the right hand side of (7.3).

Conversely, assume that (7.3) holds. Then∑
i2,...,in−1

Pi1,i2Pi2,i3 · · ·Pin−1,inPin,i1 =
∑

i2,...,in−1

Pi1,inPin,in−1 · · ·Pi2,i1

from which we get

P n−1
i1,in

Pin,i1 = Pi1,inP
n−1
in,i1

.

It follows that for all n ≥ 1 and x, y ∈ S we have

P n
x,yPy,x = P n

y,xPx,y . (7.4)
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Let π denote the stationary distribution of the Markov chain. Taking the limit of the

Césaro averages on both sides of (7.4) yields

lim
n→∞

1

n

n∑
k=1

P k
x,yPy,x = π(y)Py,x = lim

n→∞

1

n

n∑
k=1

P k
y,xPx,y = π(x)Px,y

which shows reversibility of the chain (Xn)n≥0.

Note: Kolmogorov’s loop criterion (7.3) may also be satisfied for a null recurrent Markov

chain which has (necessarily) infinite state space S. And the detailed balance equations

(7.2) may have a positive solution, but this solution then cannot be normalized to a

probability distribution π on S. As an example, consider simple symmetric random walk

on Z which is null recurrent. There is no stationary distribution. But the loop criterion

(7.3) clearly holds. The detailed balance equations (7.2) have solution π(x) ≡ c for any

c > 0.

Example 7.2.3 (Birth/death chains are reversible). Consider an irreducible, positive

recurrent birth/death chain. Without loss of generality we can take S = {0, 1, ..., n} in

case S is finite, and S = N0 in case S is infinite. Consider a finite loop x1 → x2 → · · · →
xn → x1. Since for an irreducible birth/death chain Pxy 6= 0 if and only if |x− y| = 1, we

may assume |xk−xk+1| = 1 for 1 ≤ k ≤ n−1 and |xn−x1| = 1. (Otherwise, both sides in

(7.3) are 0.) But for any loop x1 → x2 → · · · → xn → x1 with this property, the reversed

loop x1 → xn → · · · → x2 → x1 must make the same collection of one-step transitions as

the original loop, possibly some of them at different times than the original loop. For this

reason, equality (7.3) is satisfied, and it follows that any irreducible, positive recurrent

birth/death chain is reversible. The detailed balance equations (7.2) give a recursion for

computing the unique stationary distribution π. �

7.2.1 Linear-algebraic interpretation of reversibility

Let S be a finite state space which we identify with S = {1, ..., n}, and consider the real

vector space V = Rn consisting of all functions

f : S → R .

Let π be the stationary distribution of an irreducible Markov chain (Xn)n≥0 on S with

transition matrix P. The corresponding Markov operator M : V → V is the linear

operator defined by

M(f) = Pf =

(
n∑
j=1

Pijf(j)

)
1≤i≤n
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where we identify f ∈ V with a column vector. We can define an inner product 〈·, ·〉π on

V by

〈f, g〉π =
∑
x∈S

f(x)g(x)π(x) for f, g ∈ V .

Lemma 7.2.4. The Markov chain (Xn)n≥0 is reversible if and only if the corre-

sponding Markov operator M is self-adjoint, that is, if and only if

〈Pf, g〉π = 〈f,Pg〉π (7.5)

for all f, g ∈ V .

Proof. Assume (7.5) holds and apply (7.5) to the functions f = 1{i} and g = 1{j} for

i 6= j. Since Pf = (Pki)1≤k≤n and Pg = (Pkj)1≤k≤n, we get

〈Pf, g〉π = Pjiπ(j) = 〈f,Pg〉π = Pijπ(i)

which are the detailed balance equations (7.2), and so (Xn)n≥0 is reversible.

Conversely, assume (Xn)n≥0 is reversible. We have

〈Pf, g〉π =
n∑
i=1

(
n∑
j=1

Pijf(j)

)
g(i)π(i)

=
∑
i,j∈S

Pijf(j)g(i)π(i)

=
∑
i,j∈S

Pjif(j)g(i)π(j)

=
n∑
j=1

(
n∑
i=1

Pjig(i)

)
f(j)π(j) = 〈f,Pg〉π

for all f, g ∈ V , and so M is self-adjoint.

We often need to understand the eigenvalues of the transition matrix P. The importance

of the reversibility condition stems from the Spectral Theorem for self-adjoint operators

on a finite-dimensional inner product space. We quote a version of this classical theorem

for real vector spaces.

Theorem 7.2.5 (Spectral Theorem). Let V be a finite-dimensional real vector space

with inner product 〈·, ·〉 and T : V → V a linear operator. Then T is self-adjoint if

an only if V has an orthonormal basis consisting of eigenvectors of T . In particular,

for a self-adjoint operator T , all eigenvalues are real valued.
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If a given Markov chain (Xn)n≥0 is not reversible, it is often helpful to work with a modified

version of (Xn)n≥0 that is reversible. See Exercise 7.4 for possible “reversiblizations” of a

Markov chain.

Exercises

Exercise 7.1. Consider an irreducible, positive recurrent birth/death chain (Xn)n≥0 and

its stationary distribution π. Verify that the detailed balance equations hold for π.

Exercise 7.2. Let (Xn)n≥0 be a Markov chain on state space S that is reversible with

respect to a positive probability measure π on S. Fix k0 ∈ N. Show that the Markov

chain (Yn)n≥0 defined by Yn = Xnk0 is also reversible with respect to π.

Exercise 7.3. Consider a positive recurrent Markov chain (Xn)n≥0 on state space S and

a strictly positive stationary distribution π on S. Assume the chain is reducible.

(a) Show that the transition probabilities P̃xy, x, y ∈ S, for the time-reversal chain

(X̃n)n≥0 do not depend on the choice of π.

(b) Show that (X̃n)n≥0 has the same class structure, i.e. the same irreducible closed

classes, as the original chain (Xn)n≥0.

Exercise 7.4 (Additive and multiplicative reversiblizations). Let (Xn)n≥0 be an irre-

ducible Markov chain on finite state space S with stationary distribution π and transition

matrix P. We assume that (Xn)n≥0 is not reversible. Let P̃ be the transition matrix of

its time reversal.

(a) Show that the matrix PP̃ defines the transition matrix of a reversible Markov chain

on S. This chain is called the multiplicative reversiblization of (Xn)n≥0.

(b) Show that the matrix 1
2
(P + P̃) defines the transition matrix of a reversible Markov

chain on S. This chain is called the additive reversiblization of (Xn)n≥0.

Exercise 7.5. Let (Xn)n≥0 be an irreducible Markov chain on finite state space S with

stationary distribution π and transition matrix P. Consider the diagonal matrix D =

diag(π(1), ..., π(n)) and its square root D
1
2 = diag(

√
π(1), ...,

√
π(n)). Define the matrix

P̂ = D
1
2 PD−

1
2 .

Show that (Xn)n≥0 is reversible if and only if P̂ is a symmetric matrix.



Chapter 8

Markov Chains and Electric

Networks

8.1 Reversible chains and graph networks

We have introduced random walk on a weighted graph in Section 1.5. In Example 7.2.2,

we showed that random walk on a weighted graph is reversible, and we computed the sta-

tionary distribution. Conversely, any reversible Markov chain can be viewed as a random

walk on a weighted graph: Assume (Xn)n≥0 is an irreducible and reversible Markov chain

with state space S and stationary distribution π. In order to frame this Markov chain as

a random walk on a weighted graph, we view S as the vertex set V of a graph G(V,E).

Let x, y ∈ S. As a consequence of reversibility, if Pxy > 0, then Pyx > 0, and

π(x)Pxy = π(y)Pyx .

We take {x, y} ∈ E ⇐⇒ Pxy > 0, and we assign weight

C(x, y) = π(x)Pxy

to the edge {x, y}. We can directly verify that random walk on the so constructed weighted

graph yields the same transition probabilities P as the ones for the Markov chain (Xn)n≥0.

Viewing a reversible Markov chain as a random walk on a weighted graph allows us to

interpret the process as an electrical network. In taking this analogy further, we can apply

familiar laws from physics about voltage, current, resistance, etc. to the study of random

walks on graphs. This often turns out very useful for computations. The electric network

interpretation of random walks on graphs is the central focus of this chapter.

220
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Definition 8.1.1. Let G(V,E) be a connected graph and C : E → R+ a positive

function on the edge set E.

• We call G(V,E) together with the function C (i.e., the weighted graph) a

network and denote this network by (G,C).

• We refer to the value C(x, y) as the conductance of the edge {x, y}, and to

the value R(x, y) = C(x, y)−1 as the resistance of the edge {x, y}.

• Let G∗(V ∗, E∗) be a subgraph of G(V,E) and C∗ = C|E∗ the restriction of C

to E∗ ⊆ E. We say (G∗, C∗) is a subnetwork of (G,C).

Notation. We will use the following notation: We will often write x ∼ y for {x, y} ∈ E,

and set

C(x) =
∑
y∼x

C(x, y) for x ∈ V ,

and

CG =
∑
x∈V

C(x) .

Note that for the special case of C ≡ 1, we have C(x) = deg(x) and CG = 2|E|.

Example 8.1.1. Consider an irreducible Markov chain (Xn)n≥0 on state space S =

{a, b, c, d, e, f} with transition matrix

P =



0 0 1
5

4
5

0 0

0 0 0 0 1
2

1
2

1
6

0 0 1
6

0 2
3

4
7

0 1
7

0 2
7

0

0 1
5

0 2
5

0 2
5

0 1
7

4
7

0 2
7

0


.

A straightforward computation yields the stationary distribution π = ( 5
32
, 1

16
, 3

16
, 7

32
, 5

32
, 7

32
).

We also verify that the detailed balance equations

π(x)Pxy = π(y)Pyx for all x, y ∈ S

hold, so (Xn)n≥0 is reversible. Setting

C(x, y) = π(x)Pxy ,

we get the corresponding network (or weighted graph) as shown in Figure 8.1 with edge

conductances C(x, y) marked in blue. The given Markov chain (Xn)n≥0 is random walk

on this graph network. �
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a b

c f

ed

1
32

1
8

1
32

1
16

1
8

1
16

1
32

1
32

Figure 8.1

8.2 Harmonic functions

Let S be a discrete space, (Xn)n≥0 a Markov chain with state space S, and f a function on

S. Recall Definition 6.5.1 for discrete harmonic functions: We say f : S → R is harmonic

at x ∈ S if

f(x) =
∑
y∈S

Pxy f(y) ,

that is,we have f(x) = E(f(Xn+1) |Xn = x). If A ⊆ S and f is harmonic at each z ∈ A,

we say f is harmonic on A.

Proposition 8.2.1 (Superposition principle). Let (Xn)n≥0 be a Markov chain with

state space S and A ⊆ S. Let f and g be two functions on S which are harmonic

on A. Then for any constants α, β ∈ R, the function αf + βg is also harmonic on

A.

The proof of Proposition 8.2.1 is straightforward and left as an exercise. The notion of

harmonicity of a function plays a major role in this chapter. We start by collecting a few

basic facts about harmonic functions. First, recall Theorem 6.5.2. It states that for an

irreducible and recurrent Markov chain, any function f that is harmonic everywhere on S
must be a constant function.

Definition 8.2.1. Let (Xn)n≥0 be a Markov chain on state space S and W ⊆ S a

non-empty subset. Let fW : W → R. A function f : S → R is called a harmonic

extension of fW to S if fW and f agree on W and f is harmonic on S \W .
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Proposition 8.2.2 (Maximum principle). Let (Xn)n≥0 be an irreducible Markov

chain on finite state space S. Let W ⊂ S be a non-empty subset and f a function

on S that is harmonic on S \ W . Then there exists w ∈ W such that f(w) =

maxx∈S f(x).

Proof. Let b = maxx∈S f(x) and consider the set B = {z ∈ S : f(z) = b}. Let z0 ∈ B. If

z0 ∈ W , there is nothing to prove. Assume z0 ∈ S \W . Fix w0 ∈ W . Since (Xn)n≥0 is

irreducible, z0 leads to w0, so there exists a sequence of states z1, ..., zn with zn = w0 for

which Pz0z1 > 0, Pz1z2 > 0, ..., Pzn−1zn > 0. Let k0 = min1≤k≤n{k : zk ∈ W}.
Since f is harmonic at z0, we have

f(z0) = b =
∑
y∈S

Pz0yf(y) . (8.1)

Assume that for at least one y ∈ S for which Pz0y > 0 we have f(y) < b. But then (8.1)

leads to the contradiction b < b. Hence we dismiss the assumption and, in particular,

get f(z1) = b. Applying the same argument to f(z1), ..., f(zk0−1) (which is valid since

z1, ..., zk0−1 ∈ S \W ), we arrive at f(zk0) = b. Since we assumed zk0 ∈ W , the claim is

proved.

Proposition 8.2.3 (Uniqueness principle). Let (Xn)n≥0 be an irreducible Markov

chain on finite state space S and let W ⊂ S be a non-empty subset. If f1 and

f2 are two functions on S that are both harmonic on S \W and agree on W (so

f1(w) = f2(w) for all w ∈ W ), then

f1 = f2 .

Proof. Consider the function f1 − f2 which is 0 on W and harmonic on S \W . By the

Maximum principle, (f1 − f2) ≤ 0 on S \W . Reversing the roles of f1 and f2, we get

(f2 − f1) ≤ 0. It follows that f1 = f2 on S.
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Proposition 8.2.4 (Existence). Let (Xn)n≥0 be an irreducible Markov chain on

finite state space S and let W ⊂ S be a non-empty subset. Let fW : W → R be a

function on W , and consider the hitting time TW = min{n ≥ 0 : Xn ∈ W}. Then

the function f : S → R defined by

f(x) = Ex[fW (XTW )] for x ∈ S

is the unique harmonic extension of fW to S.

Proof. Clearly, for w ∈ W , f(w) = Ew[fW (X0)] = fW (w), so f and fW agree on W .

We need to show that f is harmonic on S \ W . Let x ∈ S \ W and assume X0 = x.

Conditioning on the state the Markov chain is in at time n = 1, we get

f(x) = Ex[fW (XTW )] =
∑
y∈S

Pxy Ex[fW (XTW ) |X1 = y] .

By the Markov property, Ex[fW (XTW ) |X1 = y] = Ey[fW (XTW )] = f(y) for all y ∈ S,

and so we have

f(x) =
∑
y∈S

Pxy f(y) for all x ∈ S \W

which shows that f is a harmonic extension of fW to S. Uniqueness of f follows from the

uniqueness principle.

Example 8.2.1. Consider simple random walk on S = {0, 1, ..., N} with reflecting bound-

aries at 0 and at N whose transition graph is shown in Figure 8.2.

0 1 2 N

1 p

1− p1− p 1− p 11− p

p p

Figure 8.2

Let W = {0, N} and define fW (0) = 1 and fW (N) = 0. Then the unique harmonic

extension of fW to S is

f(k) = Ek[fW (XTW )] = Pk(T 0 < TN) for 1 ≤ k ≤ N − 1 .

The function values f(k) are the gambler’s ruin probabilities (see Section 4.4). �
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8.3 Voltage and Current

Throughout this section we assume that G(V,E) is a finite, connected graph that has no

self loops.

Definition 8.3.1. Let (G,C) be a finite, irreducible network with vertex set V .

Consider two vertices a, b ∈ V . A function Φ on V that is harmonic on V \ {a, b}
is called a voltage on (G,C). If Φ(a) ≥ Φ(b), we call a the source and b the sink

of the network.

Note that by the results from Section 8.2, for given boundary values Φ(a) and Φ(b), a

voltage exists and is unique. We can interpret (G,C) together with a voltage on it as an

electric circuit where electricity flows along its weighted edges (i.e., conductors between

vertices with given resistances) according to known laws of physics.

Definition 8.3.2. Let (G,C) be a finite, irreducible network and a, b ∈ V . A flow

from a to b is an anti-symmetric function I on the oriented edges of (G,C), that

is,

I(x, y) = −I(y, x) for {x, y} ∈ E , (8.2)

for which Kirchhoff’s node (or Kirchhoff’s current) law holds for all x ∈
V \ {a, b}, that is, we have∑

y:y∼x

I(x, y) = 0 for all x ∈ V \ {a, b} , (8.3)

and ∑
y:y∼a

I(a, y) ≥ 0 .

Definition 8.3.3. Given a voltage Φ on (G,C), its current flow IΦ is the flow

defined by

IΦ(x, y) =
Φ(x)− Φ(y)

R(x, y)
for {x, y} ∈ E . (8.4)

Ohm’s law: The definition of current flow in (8.4),

IΦ(x, y) =
Φ(x)− Φ(y)

R(x, y)
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matches Ohm’s law for electrical circuits which states that the electrical current between

two nodes equals their potential difference divided by the resistance of the conductor that

connects them.

Notes: (1) For any flow I from a to b on a network (G,C), the antisymmetry property

on oriented edges implies∑
x∈V

(∑
y:y∼x

I(x, y)

)
=

∑
{x,y}∈E

[I(x, y) + I(y, x)] = 0 . (8.5)

(2) Kirchhoff’s node law indeed holds for the current flow IΦ associated with a voltage Φ

on a network: For all vertices x ∈ V \ {a, b}, we have∑
y:y∼x

IΦ(x, y) =
∑
y:y∼x

Φ(x)− Φ(y)

R(x, y)
= C(x)

∑
y∼x

C(x, y)

C(x)
[Φ(x)− Φ(y)]

= C(x)

[∑
y:y∼x

PxyΦ(x)−
∑
y:y∼x

PxyΦ(y)

]

= C(x) [Φ(x)− Φ(x)] = 0 .

(3) A current flow does not change if we add the same constant c to the boundary values

Φ(a) and Φ(b) (which then adds c to the resulting voltage on V ). For this reason, we

can take one of the boundary values to be 0 and the other to be positive. Without loss

of generality, we will assume Φ(a) > 0 (which makes a the source) and Φ(b) = 0 (which

makes b the sink). Since the network is irreducible, by Proposition 8.2.4, at least one

neighboring vertex of a has voltage strictly smaller than Φ(a). Therefore, at the source a,∑
y:y∼a

IΦ(a, y) > 0 . (8.6)

Definition 8.3.4. Let I be a flow from a to b. We call ‖I‖ =
∑
y:y∼a

I(a, y) the

strength of the flow I. If ‖I‖ = 1, we call the flow I a unit flow.

By (8.6), for a current flow IΦ, we have

‖IΦ‖ > 0 ,

and by (8.3), (8.5), and (8.6), we have at the sink b,∑
y:y∼b

IΦ(b, y) = −‖IΦ‖ < 0 .
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Proposition 8.3.1 (Probabilistic interpretation of voltage I). Let (G,C) be a finite,

irreducible network, and consider random walk on the network. Let a, b ∈ V . Then

for all x ∈ V and for the given boundary values Φ(a) = 1 and Φ(b) = 0, the voltage

Φ(x) at x is

Φ(x) = Px(T a < T b)

for the random walk on (G,C).

Proof. Let W = {a, b}. By Proposition 8.2.4, the unique voltage Φ at x is

Φ(x) = 1 · Px(TW = a) + 0 · Px(TW = b) = Px(T a < T b) .

(Note: Example 8.2.1 shows a special case.)

Next, we are interested in the probabilistic meaning of current flow. For this, we will

consider the random variable

V x
T b =

T b−1∑
k=0

1{x} , (8.7)

which is the number of visits to state x before the chain visits b for the first time. We

will assume that the chain starts in state a and will use the notation

v(x) = Ea(V x
T b) .

Proposition 8.3.2 (Probabilistic interpretation of current). Let (G,C) be a finite,

irreducible network, let a, b ∈ V , and consider random walk (Xn)n≥0 on the network

that starts at vertex a. Let Φ be a voltage on (G,C) with source a and sink b.

For any edge {y, z} with y, z 6= b, the current flow IΦ(y, z) is proportional to the

expected number of directed edge crossings between y and z, that is, the

expected number of crossings from y to z minus the expected number of crossings

from z to y before the chain visits state b for the first time. More precisely, for a

given voltage Φ, there exists a constant cΦ such that for every y, z ∈ V \ {b} with

y ∼ z,

IΦ(y, z) = cΦ [v(y)Pyz − v(z)Pzy] . (8.8)
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Proof. Note that v(b) = Ea(V b
T b

) = 0. Let x 6= b. If we modify the random walk by

changing b into an absorbing state, then in the notation of Section 2.3, we have

v(x) = (V)a,x ,

that is, v(x) is the (a, x)-entry in the fundamental matrix V for the transition matrix P

of the modified chain. Recall that V(I−Q) = I, and so

VQ = V − I . (8.9)

For x 6= a, we get for the (a, x)-entry of the matrix defined by either side of (8.9),∑
y∈V

(V)a,yPyx = (V)a,x , and so
∑
y∈V

v(y)Pyx = v(x) . (8.10)

Because of the reversibility of the random walk on (G,C), we have C(x)Pxy = C(y)Pyx.

Substituting Pyx = PxyC(x)/C(y) in (8.10) yields

v(x)

C(x)
=
∑
y∈V

Pxy
v(y)

C(y)
,

which shows that the function

Φ̃(z) =
v(z)

C(z)
for z ∈ V (8.11)

is harmonic on V \ {a, b}. It is the unique voltage corresponding to the boundary values

Φ̃(a) =
v(a)

C(a)
and Φ̃(b) = 0. The current flow IΦ̃ for this voltage is

IΦ̃(y, z) =
(

Φ̃(y)− Φ̃(z)
)
C(y, z)

= v(y)
C(y, z)

C(y)
− v(z)

C(z, y)

C(z)
= v(y)Pyz − v(z)Pzy .

This shows that for the specific voltage (8.11) and any edge {y, z} with y, z 6= b, the flow

IΦ̃(y, z) (which takes direction into account) is equal to the expected number of directed

edge crossings [v(y)Pyz − v(z)Pzy] before time T b.

Now consider any voltage Φ with given boundary values Φ(a) > 0 and Φ(b) = 0. Define

cΦ = Φ(a)/Φ̃(a). By the Superposition principle (Proposition 8.2), we have Φ = cΦ Φ̃ on

V , and hence IΦ = cΦ IΦ̃ on the directed edges of the network. This proves (8.8).

Corollary 8.3.3. For a given finite, irreducible network (G,C), the current flow

corresponding to the voltage Φ̃ defined by (8.11) is the unit current flow. That is,

‖IΦ̃‖ = 1.
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Proof. By Proposition 8.3.2, ‖IΦ̃‖ =
∑

z:z∼a IΦ̃(a, z) is the expected number of times the

random walk leaves state a minus the expected number of times the random walk enters

state a, before hitting state b for the first time. This number must be 1, since the walk

starts in a, and afterwards, for each time the walk returns to a, it will leave a.

We now turn to the computation of Φ̃(a). We will denote by Φ1 the voltage resulting from

the boundary condition Φ1(a) = 1 and Φ1(b) = 0, and we will denote by I1 the current

flow resulting from Φ1.

Lemma 8.3.4. Let (G,C) be a finite, irreducible network and a, b ∈ V . With the

above notation,

Φ̃(a) =
1

‖I1‖
. (8.12)

Proof. Note that multiplication of a voltage results in multiplication of the resulting

current by the same factor. Thus

Φ̃(a)

‖IΦ̃‖
=

Φ1(a)

‖I1‖
.

Since ‖IΦ̃‖ = 1 and Φ1(a) = 1, we have (8.12).

The previous discussion yields the following, second interpretation of voltage.

Proposition 8.3.5 (Probabilistic interpretation of voltage II). Let (G,C) be a

finite, irreducible network. Consider two distinct vertices a, b ∈ V and random walk

on the network starting at a. Let Φ̃ denote the voltage on V defined by the boundary

values Φ̃(b) = 0 and Φ̃(a) > 0 chosen such that the corresponding current flow is

the unit current flow. Then

Φ̃(x) =
Ea(V x

T b
)

C(x)
for all x ∈ V (8.13)

where V x
T b

is the number of visits to state x between (including) times 0 and T b− 1.

As an immediate corollary of Proposition 8.3.5, we get the following identity for the

expected hitting time of a state b:
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Corollary 8.3.6. Consider random walk on a finite network (G,C) and two distinct

vertices a, b ∈ V . Then

Ea(T b) =
∑
x∈V

Φ̃(x)C(x) (8.14)

Example 8.3.1. Consider random walk on the network shown in Figure 8.3. Notice

that this network is a scaled version of the network in Figure 8.1. We have scaled the

conductances, but the resulting Markov chain is still the same as in Example 8.1.1.

Compute (a) Pd(T a < T b), (b) Ea(V a
T b

), and (c) Ea(V d
T b

).

a b

c f

ed

1
2

2

1
2

1

2

1

1
2

1
2

Figure 8.3

If we apply unit voltage at vertex a and zero voltage at vertex b, we get the voltages at

the rest of the vertices as marked in Figure 8.4.

Φ1(a) = 1 Φ1(b) = 0

Φ1(c) = 173
247 Φ1(f) = 10

19

Φ1(e) = 109
247

Φ1(d) = 197
247

1
2

2

1
2

1

2

1

1
2

1
2

Figure 8.4: Voltages associated with the network in Figure 8.3

(a) By directly reading off the voltage at vertex d in Figure 8.4, we have

Pd(T a < T b) = Φ1(d) =
197

247
≈ 0.80 .

(b) First, we compute the strength of the flow. It is

‖I1‖ = I1(a, c) + I1(a, d) = (1− 173

247
)
1

2
+ (1− 197

247
)2 =

137

247
.
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By (8.11) and (8.12), we have

Ea(V a
T b

)

C(a)
= Φ̃(a) =

1

‖I1‖
,

from which we conclude that

Ea(V a
T b) = C(a)/‖I1‖ = 3

247

137
≈ 5.41 .

(c) If the walk starts at vertex a, then the expected number of visits to vertex d before

time T b is

Ea(V d
T b) = C(d)Φ1(d)/‖I1‖ = (

7

2
)(

197

247
)(

247

137
) ≈ 5.03 .

�

8.4 Effective resistance

Let (G,C) be a finite, irreducible network and a, b ∈ V . Let Φ be a voltage on V with

given boundary values Φ(a) > 0 and Φ(b) = 0. Recall that the total flow at vertex a is

equal to ‖IΦ‖ > 0, so in continuing with the physics analogy, electricity is flowing out of

vertex a and into the network. By Kirchhoff’s law, for any vertex x ∈ V \{a, b}, the total

flow at x is 0. Thus at vertex b, the total flow is −‖IΦ‖. The same amount of electricity

that flows into the network at vertex a flows out of the network at vertex b.

Definition 8.4.1. Let (G,C) be a finite, irreducible network, and let Φ be a voltage

on V with source a and sink b. We define the effective resistance Reff(a, b)

between a and b by

Reff(a, b) =
Φ(a)− Φ(b)

‖IΦ‖
. (8.15)

Analogously, the effective conductance Ceff(a, b) between a and b is defined by

Ceff(a, b) = Reff(a, b)−1 .

Notice that the quotient in (8.15) does not depend on the specific voltage Φ. Hence

Reff(a, b) is determined by the properties of the network (G,C) alone, and it can be

computed from any voltage, say from Φ1, as in the following proposition.
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Proposition 8.4.1. Let (G,C) be a finite, irreducible network, and let a, b ∈ V .

Consider the voltage Φ1 on V with boundary values Φ1(a) = 1 and Φ1(b) = 0, and

let I1 be its flow. Then

Reff(a, b) =
1

‖I1‖
and Ceff(a, b) = ‖I1‖ .

Interpretation of effective resistance: Imagine a second, small network consisting of

only the two vertices a and b and a single edge {a, b} with conductance Ceff(a, b) (and

therefore resistance Reff(a, b)). If we apply the same voltage to a and b in both networks,

the resulting current out of a and into b will be the same in both networks. Equivalently,

we can say that Reff(a, b) is the difference in voltage at a and at b that is needed in order

to create a unit current flow from a to b in the network.

We can now establish a connection between effective resistance and escape probabilities.

Assume the random walk on the network starts at vertex x, and y is another vertex,

distinct from x. We call the probability Px(T y < T x), i.e., the probability that the walk

will visit y before it returns back to x for the first time, an escape probability.

Proposition 8.4.2 (Escape probability). Let (G,C) be a finite, irreducible network,

let x, y ∈ V be two distinct vertices, and consider random walk on the network. Then

Px(T y < T x) =
1

C(x)Reff(x, y)
=
Ceff(x, y)

C(x)
.

Proof. We define a voltage Φ1 on V with Φ1(x) = 1 and Φ1(y) = 0. The strength of the

associated current flow is

‖I1‖ =
∑
z:z∼x

(Φ1(x)− Φ1(z))C(x, z) =
∑
z:z∼x

(1− Φ1(z))C(x, z)

= C(x)−
∑
z:z∼x

Φ1(z)C(x, z) = C(x)

(
1−

∑
z:z∼x

Φ1(z)
C(x, z)

C(x)

)

= C(x)

(
1−

∑
z:z∼x

PxzΦ1(z)

)
= C(x)Px(T y < T x) .

Since Reff(x, y) = 1/‖I1‖, it follows that

Px(T y < T x) =
1

C(x)Reff(x, y)
.
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Example 8.4.1. We continue Example 8.3.1. It is random walk on the network shown

in Figure 8.3, for which we have computed ‖I1‖ = 137
247

. Hence the effective resistance

between a and b is Reff(a, b) = 247
137

, and we get for the escape probability,

Pa(T b < T a) = (
2

5
)
137

247
≈ 0.22 .

�

When computing the effective resistance (or effective conductance) between two vertices,

it is often helpful to simplify the network, without changing voltages and currents

in the network. Towards this end, we can apply any of the following four simplifications:

(1) Series law (resistances in series add): Let a 6= b. We would like to replace

the two edges {a, v} and {v, b} with common endpoint v and with respective resistances

R1 = R(a, v) and R2 = R(v, b) by a single edge {a, b} with resistance R, without changing

the current flow.

a v

R1

b

R2

a b

R = R1 +R2

Figure 8.5: Series law

We assume the voltages Φ(a) and Φ(b) are the same for both networks. By Kirchhoff’s

law, I = I(a, v) = I(v, b) in the above network. We would like the modified network to

have the same flow I. By Ohm’s law,

I =
Φ(a)− Φ(v)

R1

=
Φ(v)− Φ(b)

R2

=
Φ(a)− Φ(b)

R

which yields

R1 I +R2 I = RI ,

from which we get

R = R1 +R2 .
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(2) Parallel law (conductances in parallel add): Here we have two distinct edges

with same endpoints a and b and with respective resistances R1 and R2 (and respective

conductances C1 and C2). We would like to replace the two edges with a single edge {a, b}
with resistance R (and conductance C), without changing the current flow.

Again, we assume the voltages Φ(a) and Φ(b) are the same for both networks. Here the

current flow at vertex a is

I =
Φ(a)− Φ(b)

R1

+
Φ(a)− Φ(b)

R2

=
Φ(a)− Φ(b)

R
.

From this we compute
1

R
=

1

R1

+
1

R2

,

and so

R =

(
1

R1

+
1

R2

)−1

and C = C1 + C2 .

a b

R1

R1
a b

R = ( 1
R1

+ 1
R2

)−1

Figure 8.6: Parallel law

(3) Combining vertices that have the same voltage: If two or more vertices (none

of them being vertices a or b) have the same voltage, they can be combined into one

single vertex (while keeping all existing edges, with the exception of any resulting self-

loops that may be deleted) without changing Reff(a, b). This follows from the fact that

combining vertices of equal voltage will not change the voltages at the rest of the vertices,

and therefore will not change the the strength of the current flow from a to b. Exercise

8.10 asks the reader to verify this.

(4) Deleting an edge whose end-vertices have the same voltage: If two vertices

(neither of them being vertices a or b) have the same voltage, any edge between them

can be deleted without changing Reff(a, b). This follows from the fact that deleting such

an edge will not change the voltages in the network, and therefore will not change the

strength of the current flow from a to b. Exercise 8.9 asks the reader to verify this.



8.4. EFFECTIVE RESISTANCE 235

a b

x y z

z′y′x′

Figure 8.7

a b

Figure 8.8

Example 8.4.2. Consider simple random walk (all edges have conductance 1) on the

graph in Figure 8.7. Compute Reff(a, b).

We set Φ(a) = 1 and Φ(b) = 0. Because of the symmetry of the graph, it is clear that

for the voltages at the rest of the vertices, we have Φ(x) = Φ(x′), Φ(y) = Φ(y′), and

Φ(z) = Φ(z′). For the purpose of computing Reff(a, b), we can combine vertices that have

equal voltage and delete any self-loops. This results in the simplified graph in Figure 8.8

which can be further simplified to

a b
2 2 2 2

and a b

1
2

where the blue numbers are the edge conductances. Hence Reff(a, b) = 2.

Alternate approach: We delete edges {y, y′} and {z, z′}. Instead of combining x and x′, y

and y′, z and z′, we first apply the series law, then the parallel law. See Figure 8.9. This,

again, yields Reff(a, b) = 2.

a b

1
4

1
4

a b

1
2

Figure 8.9

�
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a b

x

Figure 8.10

Example 8.4.3. Consider simple random walk on the graph in Figure 8.10. All edges are

assumed to have conductance 1. Find the probabilities Px(T b < T a) and Pa(T b < T a).

In order to be able to compute the desired probabilities, we will simplify the network in

a number of steps. See Figure 8.11. The numbers in blue are edge conductances:

a b

1/2

1

1/3

1
1/2

1/2

1

1

1

1/3 x

a b

3/2
1/3

1

1

11

4/3 x

a b

3/11

1/2
4/11

x

a b

3/11

4/19

a b

101
209

Figure 8.11: Simplifying the network in Figure 8.10

Hence Ceff(a, b) = 101
209

and Reff(a, b) = 209
101

. Here C(a) = 3, so we get for the escape

probability for vertex a,

Pa(T b < T a) =
Ceff(a, b)

C(a)
=

101

627
.

From the first network in the second row in Figure 8.10, i.e. the simplified network that

contains exactly the three vertices x, a and b, we compute

Px(T b > T a) =
1/2

1/2 + 4/11
=

11

19
.

�
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Example 8.4.4. Consider the gambler’s ruin problem from Section 4.4. In order to

phrase the process as a random walk on a network, we consider states 0 and stateN as

reflecting boundaries, that is we set P01 = PN,N−1 = 1. For states k = 1, ..., N − 1 we

have Pk,k+1 = p and Pk,k−1 = 1− p. Assume the gambler starts with fortune x at time 0.

Because of the reflecting boundaries, the process is an irreducible birth/death chain, and

it is also reversible. It is equivalent to random walk on network in Figure 8.12 (the blue

numbers are conductances; we set q = 1− p).

p
q

(p
q
)2 (p

q
)N(p

q
)x· · · · · ·
x

0 N

Figure 8.12

Note that the gambler’s ruin probability Px(T 0 < TN) is equal to the voltage at vertex x,

when setting the voltage to 1 at vertex 0, and to 0 at vertex N . In the following, we will

set r = q
p

when p 6= q. After applying the series law (which does not change the voltage

at x), the network simplifies to the network in Figure 8.13

1−r
r(1−rx)

1−r
r(rx−rN )

x
0 N

Figure 8.13

For the case p = 1
2
, we get the network in Figure 8.14.

1
x

1
N−x

x
0 N

Figure 8.14

We can now derive the gambler’s ruin probabilities from the above simplified networks.

From

Px(T 0 < TN) =
Ceff(0, x)

Ceff(0, x) + Ceff(x,N)

we get

Px(T 0 < TN) =


rx − rN

1− rN
=

( q
p
)x − ( q

p
)N

1− ( q
p
)N

for p 6= 1
2

(N − x)/N for p = 1
2
.
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These formulas match the formulas we have derived in Section 4.4, using a different

approach. �

Lemma 8.4.3. Consider a finite network (G,C), two vertices a, b ∈ V , and a flow

I from a to b. For any function f : V → R, we have

(f(a)− f(b)) ‖I‖ =
1

2

∑
x,y∈V

(f(x)− f(y)) I(x, y) . (8.16)

Proof.

1

2

∑
x,y∈V

(f(x)− f(y)) I(x, y) =
1

2

(∑
x,y∈V

f(x)I(x, y)−
∑
x,y∈V

f(y)I(x, y)

)

=
1

2

(∑
x,y∈V

f(x)I(x, y) +
∑
x,y∈V

f(y)I(y, x)

)

=
∑
x,y∈V

f(x)I(x, y)

=
∑
x∈V

f(x)
∑
y∈V

I(x, y)

= f(a)‖I‖ − f(b)‖I‖ = (f(a)− f(b)) ‖I‖

Definition 8.4.2. Consider a finite network (G,C), two vertices a, b ∈ V , and a

flow I from a to b. The energy E(I) dissipated by the flow I is defined by

E(I) =
1

2

∑
x,y∈V

I(x, y)2R(x, y) . (8.17)

Note that E(I) =
∑
{x,y}∈E

I(x, y)2R(x, y).

If in particular the flow is a current flow Iφ, then by (8.16) and (8.17) with f = Φ, the

energy dissipated by the current flow is

E(IΦ) = (Φ(a)− Φ(b)) ‖Iφ‖ , (8.18)

and using the definition of effective resistance in (8.18),

E(IΦ) = Reff(a, b)‖Iφ‖2.
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From this, we have the following proposition:

Proposition 8.4.4. Let (G,C) be a finite network, a, b ∈ V , and IΦ a current flow

from a to b. The effective resistance Reff(a, b) is equal to E(IΦ) when IΦ is the unit

current flow.

The following result is known as Thomson’s Principle and will be useful.

Theorem 8.4.5 (Thomson’s Principle). Let (G,C) be a finite network, a, b ∈ V ,

and IΦ the unit current flow from a to b. Then

E(IΦ) = min{E(I) : I is a unit flow from a to b}

and E(IΦ) < E(I) for all unit flows I 6= IΦ from a to b.

Proof. Let I be a unit flow from a to b and IΦ the unit current flow from a to b. We

define a new flow F = I − IΦ which is also a flow from a to b. Note that ‖F‖ = 0. We

have

2E(I) = 2E(F + IΦ)

=
∑
x,y∈V

(F (x, y) + IΦ(x, y))2R(x, y)

=
∑
x,y∈V

F (x, y)2R(x, y) + 2
∑
x,y∈V

F (x, y)IΦ(x, y)R(x, y) +
∑
x,y∈V

IΦ(x, y)2R(x, y)

=
∑
x,y∈V

F (x, y)2R(x, y) + 2
∑
x,y∈V

F (x, y)(Φ(x)− Φ(y)) + 2E(IΦ) .

By (8.16), and since ‖F‖ = 0, the middle term in the sum on the right hand side of the

last line is equal to zero. Indeed,

2
∑
x,y∈V

F (x, y)(Φ(x)− Φ(y)) = 4(Φ(a)− Φ(b))‖F‖ .

Furthermore, since R(x, y) > 0 for any edge {x, y} in the edge set E of the network, we

have ∑
x,y∈V

F (x, y)2R(x, y) ≥ 0

and ∑
x,y∈V

F (x, y)2R(x, y) = 0 ⇐⇒ F ≡ 0 ⇐⇒ I = IΦ .
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Hence

E(IΦ) ≤ E(I)

with equality holding if and only if I = IΦ.

As a direct consequence of Thomson’s principle, we now have the following theorem,

known as Raleigh’s Monotonicity Principle.

Theorem 8.4.6 (Raleigh’s Monotonicity Principle). Let G(V,E) be a connected

graph and C and C? two different assignments of conductances (and hence different

corresponding resistances R and R?) to the edges of G. Then if R(x, y) ≤ R?(x, y)

for all edges {x, y} ∈ E, we have

Reff(a, b) ≤ R?
eff(a, b) for all a, b ∈ V .

Proof. Consider two networks (G,C) and (G,C?) on the same underlying graph G(V,E)

and a, b ∈ V . Assume

R(x, y) ≤ R?(x, y) for all {x, y} ∈ E .

Furthermore, consider the unit current flows IΦ on (G,C) and I?Φ? on (G,C?), both from

a to b. Note that I?Φ? is also a unit flow on (G,C) from a to b. We have

R?
eff(a, b) =

1

2

∑
x,y∈V

I?Φ?(x, y)2R?(x, y)

≥ 1

2

∑
x,y∈V

I?Φ?(x, y)2R(x, y)

= E(I?Φ?) on the network (G,C) .

By Thomson’s Principle (and Proposition 8.4.4),

E(I?Φ?) ≥ E(IΦ) = Reff(a, b) .
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Remark 8.4.7. Assume the underlying graph G(V,E) in the network (G,C) is

a simple graph, i.e. has no multiple edges or self-loops. Let a, b ∈ V . Theorem

8.4.6 implies that adding edges (that are not already in E) with arbitrary finite

conductances to the underlying graph G will not increase (but may reduce) the ef-

fective resistance Reff(a, b). Indeed, we can think of any newly added edge {x, y} as

already being part of the original network but having conductance 0 and therefore

resistance ∞, so no current will flow through {x, y} in the original network. Thus

“adding” the edge {x, y} to the network means lowering its resistance from ∞ to a

finite number. Intuitively, adding edges to the network may create more pathways

for current to flow from a to b, hence may increase the flow. By Ohm’s law, a larger

current flow implies a smaller effective resistance between a and b.

On the other hand, cutting an existing edge in the network (i.e. making the resis-

tance between its end vertices infinite) will never reduce but may increase Reff(a, b).

Remark 8.4.8. An extreme case of lowering resistance between two vertices x and y

(each of which is neither a nor b) in the network is shorting them, i.e. combining

x and y and deleting the edge between them, which can be viewed as making the

resistance between them 0. If vertices x and y in the original network have distinct

voltage, then shorting them will decrease Reff(a, b) in the new network. And as

already discussed on page 234, if x and y have the same voltage, the shorting them

will not change Reff(a, b) in the new network.

We conclude this section with a lower bound for effective resistance. First, a definition:

Definition 8.4.3. Let G(V,E) be a finite connected graph and a, b ∈ V . A subset

S ⊆ E is called a cutset separating a from b if every path from a to b contains

an edge in S.

Theorem 8.4.9 (Nash–Williams Inequality). Consider a finite connected network

(G,C) and two distinct vertices a, b ∈ V . Let S1, ..., Sk be a collection of pairwise

disjoint cutsets that separate a from b. Then

Reff(a, b) ≥
k∑
i=1

 ∑
{x,y}∈Si

C(x, y)

−1

. (8.19)
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Proof. Let S ⊆ E be a cutset that separates a from b. Consider the set A ⊆ V defined

by

A = {x : a and x are connected in the graph G̃(V,E \ S)} .

Let I be the unit current flow from a to b in G(V,E). Since
∑
y:y∼x

I(x, y) = 0 for all

x 6= a, b, we have ∑
x∈A

∑
y:y∼x

I(x, y) = ‖I‖ .

Note that by antisymmetry of I, ∑
x∈A

∑
y:y∼x
y∈A

I(x, y) = 0

since for x, y ∈ A, both I(x, y) and I(y, x) appear in the sum. Furthermore, if x ∈ A,

y /∈ A, and {x, y} ∈ E, then {x, y} ∈ S. Thus

‖I‖ =
∑
x∈A

∑
y:y∼x
y/∈A

I(x, y) ≤
∑
{x,y}∈S

|I(x, y)| . (8.20)

Since we assume ‖I‖ = 1, we have

1 ≤

 ∑
{x,y}∈S

|I(x, y)|

2

=

 ∑
{x,y}∈S

√
C(x, y)

√
R(x, y) |I(x, y)|

2

≤
∑
{x,y}∈S

C(x, y)
∑
{x,y}∈S

R(x, y)I(x, y)2

where the third line follows from the Cauchy-Schwarz inequality. This shows that ∑
{x,y}∈S

C(x, y)

−1

≤
∑
{x,y}∈S

R(x, y)I(x, y)2 . (8.21)

Setting S = Si in (8.21) and summing over i from 1 to k yields

k∑
i=1

 ∑
{x,y}∈Si

C(x, y)

−1

≤
k∑
i=1

∑
{x,y}∈Si

R(x, y)I(x, y)2 ≤
∑
{x,y}∈E

R(x, y)I(x, y)2 .

The right-most sum is the energy dissipated by the unit current flow I. Hence, by Propo-

sition 8.4.4,

Reff(a, b) ≥
k∑
i=1

 ∑
{x,y}∈Si

C(x, y)

−1

.



8.5. COMMUTE TIMES AND COVER TIMES 243

8.5 Commute times and Cover times

Let (G,C) be a finite network and x 6= y two vertices. Consider a random walk (Xn)n≥0 on

the network and assume X0 = x. Recall (from Example 2.2.1 ) the definition of commute

time T x↔y between x and y:

T x↔y = min{n > T y : Xn = x} .

We will use the notation tx↔y = Ex(T x↔y). By the Strong Markov property,

tx↔y = Ex(T y) + Ey(T x) .

Remark 8.5.1. Note that in general, Ex(T y) 6= Ey(T x) (unless the network has

special symmetry properties with respect to the two vertices x and y). However, the

following cycle identity holds for random walk on any network: For all x, y, z ∈ V ,

we have

Ex(T y) + Ey(T z) + Ez(T x) = Ex(T z) + Ez(T y) + Ey(T x). (8.22)

For a proof of (8.22), see [35].

We first give a result for the commute times tx↔y for which x and y are neighboring

vertices.

Proposition 8.5.2. Consider random walk on a finite, irreducible network (G,C).

Let V be the vertex set of G and E the edge set of G. Then∑
{x,y}∈E

C(x, y) tx↔y = CG (|V | − 1) . (8.23)

Proof. Let π denote the stationary distribution. We have
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∑
{x,y}∈E

C(x, y) tx↔y =
1

2

∑
x∈V

∑
y∈V

C(x, y)(Ex(T y) + Ey(T x))

=
∑
x∈V

∑
y∈V

C(x, y)Ey(T x)

=
∑
x∈V

C(x)
∑
y∈V

Pxy Ey(T x)

=
∑
x∈V

C(x)(Ex(T x)− 1)

= CG
∑
x∈V

π(x)(
1

π(x)
− 1)

= CG(|V | − 1) .

Proposition 8.5.3 (Commute time identity). Consider random walk on a network

(G,C) and x, y ∈ V with x 6= y. Then the expected commute time between x and y

is

tx↔y = CGReff(x, y) . (8.24)

Proof. Recall Example 2.2.1. There we have introduced the random variable V z
T y (we

reintroduced it in (8.7)) as the number of visits to state z strictly before time T y. For

z = x, we found

Ex(V x
T y) =

1

Px(T y < T x)
.

By Remark 2.2.5, µ(z) = Ex(V z
Tx↔y), z ∈ V , is an invariant measure for the random walk

on the network (G,C) which, when normalized by the factor 1/tx↔y, becomes the unique

stationary distribution π for the random walk. Also observe that, per definition of T x↔y,

for z = x, we have Ex(V x
T y) = Ex(V x

Tx↔y). Hence

µ(x)

tx↔y
=

1

Px(T y < T x) tx↔y
=
C(x)

CG

which, together with Proposition 8.4.2, yields the commute time identity

tx↔y = CGReff(x, y) .
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Example 8.5.1. Consider simple random walk on the graph in Example 8.4.3. For the

given graph G(V,E), we have |E| = 17, and so CG = 34. The expected commute time

between vertices a and b is

ta↔b = Ea(T b) + Eb(T a) = 34
209

101
= 70.36 .

�

Example 8.5.2. Again we consider the gambler’s ruin problem (see Example 8.4.4). Here

we are interested in the expected duration Ex(T {0,N}) of the game when p = 1
2
, that is, the

expected time until simple symmetric random walk visits either 0 or N for the first time.

We solve this problem by combining vertices 0 and N into one single vertex. In doing so,

we consider the boundary {0, N} as one single state for the process. This transforms the

process into simple symmetric random walk on the discrete N -cycle. See Figure 8.15.

x
0 N

x

0 = N

Figure 8.15

Because of symmetry, we have

Ex(T 0) = E0(T x) =
1

2
tx↔0

for simple symmetric random walk on the N -cycle. But Ex(T 0) for random walk on the N -

cycle is equal to Ex(T {0,N}) for the gambler’s ruin chain. We compute Reff(x, 0) = x(N−x)
N

for the N -cycle via simplifying the network in a couple of steps. See Figure 8.16 (the blue

numbers are conductances).

1/x

1/(N − x)

x 0 = N
N

x(N−x)
x 0 = N

Figure 8.16
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Here CG = 2N , and thus by Proposition 8.5.3,

tx↔0 = 2x(N − x) ,

from which follows that the expected duration of the game is

Ex(T {0,N}) = x(N − x) ,

which matches the formula we have computed in Section 4.4, using a different approach.

�

Definition 8.5.1 (Cover time). Let (Xn)n≥0 be a Markov chain on finite state space

S. The cover time random variable T cov is the minimum number of steps it takes

for the chain to visit all states in S at least once, that is,

T cov = min{n : ∀y ∈ S, ∃k ≤ n, s.t. Xk = y} .

We call its expectation

tcov
x = Ex(T cov)

the cover time for the chain starting in state x.

Example 8.5.3 (Cover time of the N -cycle). Consider simple symmetric random walk

on ZN . Because of symmetry, the distribution of the cover time random variable T cov

does not depend on the starting state x of the random walk, and we therefore simply

write tcov for its expectation. We can restate the cover time tcov for random walk on ZN
as the expected time for simple symmetric unrestricted random walk on Z to visit a range

of N distinct states (including the starting state) for the first time. By Proposition 4.7.1,

the expected time until simple symmetric random walk on Z visits the Nth new state is

E(T (N)) = 1
2
N(N − 1). It follows that the cover time tcov for simple symmetric random

walk on the discrete cycle ZN is

tcov =
1

2
N(N − 1) .

�

Example 8.5.4 (Cover time for a star graph). Consider simple random walk on a star

graph G(V,E) with n rays (so |V | = n + 1 and |E| = n). Assume the walk starts at the

center vertex c.
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c

Figure 8.17: Star graph with 6 rays

Let us denote the time it takes for the walk to reach a kth new vertex and immediately

afterwards step back to c by T (k) for 1 ≤ k ≤ n. Then

T cov + 1 = T (n) = 2 +
n∑
k=2

(T (k) − T (k−1))

with (T (k) − T (k−1)) = 2Yk where

Yk ∼ Geom

(
n− k + 1

n

)
for 2 ≤ k ≤ n .

Since E(Yk) = n
n−k+1

, we get

tcov
c + 1 = 2 + 2

n∑
k=2

n

n− k + 1

= 2n
n∑
k=1

1

k
≈ 2n lnn (for large n) .

�

Example 8.5.5 (Cover time for a star with long rays). We now consider a star with n

long rays where each ray contains r vertices (without counting the center vertex c). For

example, for the star graph on the left-hand side in Figure 8.18, n = 6 and r = 4. For a

random walk starting at vertex c, find tcov
c .

c
c

glue together the blue vertices

Figure 8.18



8.5. COMMUTE TIMES AND COVER TIMES 248

Here we denote by T (k), for 1 ≤ k ≤ n, the commute time between c and a kth new

extremal vertex (the vertex farthest away from c) on a ray. We also use the notation

T return for the time it takes the walk to move from an extremal vertex back to c. With

this notation, we have

tcov
c + E(T return) =

n∑
k=1

E(T (k)) .

To compute E(T return), note that because of symmetry, E(T return) = 1
2
t0↔r for the chain

graph of length r:

c = 0 r

By the commute time identity, we have t0↔r = 2r · r, and so E(T return) = r2.

Next we compute E(T (k)). Assume the walk has already visited k−1 extremal vertices. In

Figure 8.18, for the graph on the right-hand side, k = 3, and we mark the already visited

vertices in black, the not-yet-visited vertices in white or blue. Since the order in which

the walk visits all extremal vertices does not matter, we can combine (glue together) the

n− k+ 1 extremal vertices that have not yet been visited. We’ll call the combined vertex

G(n−k+1).The commute time between c and G(n−k+1) is E(T (k)). The effective resistance

between c and G(n−k+1) is

Reff(c,G(n−k+1)) =
r

n− k + 1
,

and so, by the commute time identity,

E(T (k)) = 2nr

(
r

n− k + 1

)
.

Altogether, we get for the cover time for a star with long rays,

tcov
c = 2nr2

n∑
k=1

1

k
− r2 .

�

For graphs that exhibit a large amount of symmetries (we won’t make this condition

precise here), tcov
x may not depend on the starting state x. Examples are the discrete

cycle and the complete graph of n vertices. However, in general, the cover time tcov
x will

depend on the initial state x of the chain, and we are often interested in the worst-case

scenario, that is, the largest cover time

tcov = max
x∈S

tcov
x
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among all starting states. The following theorem, which was first proved in [3], gives an

upper bound for tcov for simple random walks on graphs.

Theorem 8.5.4. Let G(V,E) be a finite, connected graph. The largest cover time

tcov for simple random walk on G satisfies

tcov ≤ 2|E| (|V | − 1) .

Proof. Let T be a spanning tree1 for the graph G. If |V | = n, any spanning tree for

G will have (n− 1) edges. Let v0 be any vertex in V . It is possible to traverse a tree T ,

starting at v0, in a way that every vertex gets visited at least once, and every edge gets

traversed exactly twice, once in each direction. Such a tour v0 → v1 → · · · → v2n−2 = v0

is called a depth-first tour and is illustrated below with an example. The expected

cover time (starting at v0 is less than or equal to the expected time needed to move from

v0 to v1, then from v1 to v2, and so on until the last move from v2n−1 to v0. Thus

tcov
v0
≤

2n−2∑
k=1

Evk−1
(T vk) .

Note that here the expected hitting times Evk−1
(T vk) are for simple random walk on the

original graph G(V,E), not on T . Since in the depth-first tour every edge gets traversed

exactly once in each direction, it follows from the commute time identity that

tcov
v0
≤

∑
{v,w}∈T

tv↔w = 2|E|
∑
{v,w}∈T

Reff(v, w) .

By Raleigh’s Monotonicity Principle (see Theorem 8.4.6 and the remarks that follow it),

we have Reff(v, w) ≤ 1 for all {v, w} ∈ T , and hence

tcov
v0
≤ 2|E|(n− 1) . (8.25)

Since the upper bound in (8.25) does not depend on the starting state v0, the result of

Theorem 8.5.4 follows.

Example 8.5.6. Consider simple random walk on the graph G(V,E) in Figure 8.19.

The subset of blue edges in Figure 8.20 constitutes a spanning tree T for G(V,E).

A depth-first tour seeks to increase with each step, if possible, its edge distance to the

starting point, but without duplicating directed edge crossings. If at a given time this is

1A spanning tree T for a connected graph G(V,E) is a subgraph of G that contains all vertices V and

a minimum number of edges from E. Every connected graph has at least one spanning tree.
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x

y

z

u

v

w

Figure 8.19

x

y

z

u

v

w

Figure 8.20: A spanning tree for the graph in Figure 8.19

not possible, the walk takes a step “backwards towards its starting point” which reduces

its distance to the starting point by one edge. Along such a tour, each oriented edge in T

will be traversed exactly once.

An example of a depth-first tour for the spanning tree in Figure 8.20 that starts at vertex

u is

u→ x→ u→ z → y → z → w → z → u→ v → u .

Or, as another example, a depth-first tour for the same spanning tree that starts at vertex

w, is

w → z → y → z → u→ x→ u→ v → u→ z → w .

�

Let G(V,E) be a graph with |V | = n. Since, for any graph, we have |E| ≤
(
n
2

)
, Theorem

8.5.4 tells us that the cover time for any finite graph can be at most O(n3). For the star

graph (see Example 8.5.4) we have shown by direct computation that tcov is O(n lnn),

which is of strictly lower order than the upper bound from Theorem 8.5.4 for this graph,

namely O(n2). In most cases though, a direct computation of tcov is not feasible, and

Theorem 8.5.4 provides a useful upper bound.

Example 8.5.7 (Cover time for the “lollipop graph” is maximal). Consider a so-called

lollipop graph which consists of a complete graph Km of m vertices (also called a clique)
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with a chain graph of r vertices attached to it. Here we consider a lollipop graph G of n

vertices (with n even) consisting of a clique Kn/2 of n/2 vertices and an attached chain

graph of n/2 vertices. Figure 8.21 shows an example where n = 10.

c v
n/2 vertices

Kn/2

Figure 8.21: Lollipop graph

We claim that the cover time tcov
c for simple random walk starting at c is Θ(n3). By

Theorem 8.5.4, the cover time tcov
c is O(n3). Clearly,

tcov
c ≥ Ec(T v) = tc↔v − Ev(T c).

Note that the number of edges of G is |E| = n
2
(n

2
− 1)1

2
+ n

2
= Θ(n2). The effective

resistance between c and v is Reff(c, v) = n
2
. Thus, by the commute time identity,

tc↔v = 2

[
n

2
(
n

2
− 1)

1

2
+
n

2

]
n

2
= Θ(n3) .

And we have Ev(T c) = (n
2
)2 = Θ(n2) (recall a similar computation in Example 8.5.5).

Altogether, it follows that tc↔v is Θ(n3). �

Note: We can show that for simple random walk starting at the outer end v of the

chain graph, the cover time tcov
v for the lollipop graph from Example 8.5.7 is significantly

smaller, namely O(n2).

Remark 8.5.5. U. Feige[14] proved that for all graphs with n vertices,

tcov ≤ 4

27
n3 + o(n3) .

For the lollipop graph consisting of a clique of 2n/3 vertices and a chain graph of

n/3 vertices, this upper bound is tight, that is, tcov = 4
27
n3 + o(n3). For a lower

bound, Feige[15] proved that for all graphs with n vertices, tcov = Ω(n ln(n)). Note

that for the star graph, we have shown tcov = Θ(n ln(n)).

Perhaps not surprisingly, graphs that possess a large amount of inherent symmetry

(e.g., the star graph) tend to have a relatively small cover time. On the other hand,

graphs with little or no symmetry properties (the lollipop graph is an extreme case)

tend to have relatively large cover times.
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8.6 Transience and Recurrence of Infinite Networks

We now turn to the study of infinite networks. We will consider networks (G,C) for

which the underlying graph G(V,E) is connected and the number of vertices is countably

infinite. We will always assume that the graph G(V,E) is locally finite, that is, each

vertex v ∈ V has finite degree. Our main focus are questions regarding transience or

recurrence of random walks on such networks. We will study these questions with the use

of analogous notions to effective resistance, flows, energy dissipated by a flow, etc. for

infinite networks.

Let G(V,E) be (finite or infinite) graph and (G,C) a network. Recall that G∗(V ∗, E∗)

is called a subgraph of G if V ∗ ⊆ V and E∗ ⊆ E. A network (G∗, C∗) is called a

subnetwork of (G,C) if G∗ is a subgraph of G and C∗ is the restriction of C from E to

E∗.

Definition 8.6.1. (a) Let G(V,E) be a graph and G∗(V ∗, E∗) a subgraph of G.

We say G∗ is an induced subgraph of G if for all x, y ∈ V ∗,

{x, y} ∈ E =⇒ {x, y} ∈ E∗ .

(b) Let G(V,E) be an infinite graph and {Gn}n≥1 with Gn = (Vn, En) for n ≥ 1

a sequence of finite induced subgraphs of G. We say {Gn}n≥1 exhausts G if

Vn ⊆ Vn+1 ∀n ≥ 1, and

V =
⋃
n≥1

Vn .

Now consider an infinite, connected, locally finite network (G,C) and a sequence {Gn}n≥1

of finite induced subgraphs Gn(Vn, En) that exhaust G. From this sequence of finite

subgraphs, we construct the following sequence {(G̃n, C̃n)}n≥1 with G̃n = (Ṽn, Ẽn) of

finite networks: For each n ≥ 1, we combine (short) the infinite set of vertices V \ Vn so

as to result in a single vertex bn, and then delete any possibly resulting self-loops for bn.

We set Ṽn = Vn ∪ {bn}. Note that this construction may result in multiple (but always

at most finitely many) edges between a vertex x ∈ Vn and bn as part of the edge set Ẽn.

In order to distinguish such multiple edges, we can label them by z, i.e. write {x, bn}z if

z ∈ V \ Vn and {x, z} ∈ E. The conductances C̃n are

C̃n(x, y) = C(x, y) if x, y ∈ Vn
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and

C̃n(x, bn)z = C(x, z) if x ∈ Vn , z ∈ V \ Vn , and {x, z} ∈ E .

Let a ∈ V1. Since for n ≥ 1, the finite network (G̃n, C̃n) arises from (G̃n+1, C̃n+1) by

shorting vertices, by Raleigh’s Monotonicity Principle,

Reff(a, bn) ≤ Reff(a, bn+1) (8.26)

where the effective resistance on the left-hand side is for the network (G̃n, C̃n), and the

effective resistance on the right-hand side is for the network (G̃n+1, C̃n+1). By (8.26),

lim
n→∞

Reff(a, bn) exists. This limit may be finite or infinite.

Definition 8.6.2. Consider an infinite, connected, locally finite network (G,C) and

a corresponding sequence of finite networks {(G̃n, C̃n)}n≥1 constructed as described

above. Let a ∈ V1. The effective resistance from vertex a to ∞ is defined by

Reff(a,∞) = lim
n→∞

Reff(a, bn) .

Correspondingly, the effective conductance from a to ∞ is defined by

Ceff(a,∞) = Reff(a,∞)−1 .

Recall Proposition 8.4.2. Using the same setup as in Definition 8.6.2, we have for n ≥ 1,

Pa(T bn < T a) =
1

C(a)Reff(a, bn)
=
Ceff(a, bn)

C(a)
(8.27)

where all quantities refer to random walk on the network (G̃n, C̃n). Furthermore,

lim
n→∞

Pa(T bn < T a) = Pa(T a =∞) (8.28)

where the probability on the right-hand side of (8.28) refers to random walk on the infinite

network (G,C). Recall that random walk on an irreducible Markov chain is recurrent iff

Pa(T a = ∞) = 0 for some state a and transient iff Pa(T a = ∞) > 0 for some state a.

This yields the following result:

Proposition 8.6.1. Consider an infinite, connected, locally finite network (G,C)

and a corresponding sequence of finite networks {(G̃n, C̃n)}n≥1 constructed as de-

scribed above. Let a ∈ V1. Random walk on (G,C) is recurrent iff

Reff(a,∞) =∞ .

Equivalently, random walk on (G,C) is transient iff Reff(a,∞) <∞.
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Proof. By (8.27),

lim
n→∞

Pa(T bn < T a) =
1

C(a)Reff(a,∞)
(8.29)

which, together with (8.28) and the paragraph following (8.28), proves the statement.

Note: By (8.29) and (8.28), the effective resistance Reff(a,∞) does not depend on the

choice of sequence {Gn}n≥1 of finite induced subgraphs of G that exhaust G.

Example 8.6.1 (Simple symmetric random walk on N0 with reflecting boundary at 0).

The sequence of chain graphs Gn = [0, n], n ≥ 1, exhausts N0. For each n ≥ 1, the

network (G̃n, C̃n) (constructed in the manner described on page 252) is simply the chain

graph [0, (n+ 1)] with unit conductances. Since

Reff(0, (n+ 1)) = n+ 1

for network (G̃n, C̃n), n ≥ 1, we have

Reff(0,∞) = lim
n→∞

(n+ 1) =∞

which shows that simple symmetric random walk on N0 with reflecting boundary at 0 is

recurrent. �

Example 8.6.2 (Recurrence of simple symmetric random walk on Z). Consider simple

symmetric random walk on G = Z. Here the sequence of chain graphs Gn = [−n, n],

n ≥ 1, exhausts G. For each n ≥ 1, the network (G̃n, C̃n) as described on page 252 is

the discrete cycle Z2n+2 with unit conductances. It arises by identifying the end-vertices

(n + 1) and −(n + 1) in the chain graph [−(n + 1), (n + 1)] and renaming part of the

vertices. Applying the Series and Parallel laws, we compute

Reff(0, (n+ 1)) =
n+ 1

2

for network (G̃n, C̃n), n ≥ 1. It follows that

Reff(0,∞) = lim
n→∞

n+ 1

2
=∞,

and so simple symmetric random walk on Z is recurrent. �
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We point out that by Definition 8.6.2, Raleigh’s Monotonicity principle (Theorem

8.4.6 for finite networks) carries over to Reff(a,∞) for infinite networks. For two

conductances C and C? on the same underlying infinite graph G(V,E) for which R(x, y) ≤
R?(x, y) for all {x, y} ∈ E , we have

Reff(a,∞) ≤ R?
eff(a,∞) (8.30)

where Reff(a,∞) and R?
eff(a,∞) are the effective resistances from vertex a to ∞ for the

networks (G,C) and (G,C?), respectively.

Proposition 8.6.2 (Comparing networks). Consider two conductances C and C?

on the same infinite graph G(V,E).

(a) Assume C?(x, y) ≤ C(x, y) for all {x, y} ∈ E . If random walk on (G,C)

is recurrent, then random walk on (G,C?) is also recurrent. In particular,

if some vertices in (G,C) are shorted, the resulting self-loops deleted, and

random walk on the resulting network is recurrent, then random walk on the

original network (G,C) is also recurrent.

(b) Assume C?(x, y) ≤ C(x, y) for all {x, y} ∈ E . If random walk on (G,C?)

is transient, then random walk on (G,C) is also transient. In particular, if

some edges in (G,C) are deleted and random walk on the resulting network is

transient, then random walk on the original network (G,C) is also transient.

(c) If there exist 0 < K1 ≤ K2 <∞ such that

K1C(x, y) ≤ C?(x, y) ≤ K2C(x, y)

for all {x, y} ∈ E, then random walk on (G,C) and random walk on (G,C?)

are either both recurrent or both transient.

Proof. Parts (a) and (b) directly follow from (8.30). For part (c), note that the three

networks (G,C), (G,K1C), and (G,K2C) define the same random walk on G, hence are

of the same type (transient or recurrent). The result follows from parts (a) and (b).

Example 8.6.3. Consider biased random walk on N0 with reflecting boundary at 0. It

is random walk on the network in Figure 8.22. Conductances are shown in blue.

If p < q, i.e., the walk is biased in the direction towards the boundary 0, we conclude

from Example 8.6.2 and Proposition 8.6.2(a) that the walk is recurrent.
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1
p
q

(p
q
)n−1

· · ·
n

0

Figure 8.22

Alternatively, instead of using a comparison of networks, we could directly compute

Reff(0,∞) = lim
n→∞

Reff(0, n) =
n−1∑
i=0

(
q

p

)i
=∞

which shows that the walk is recurrent. �

Definition 8.6.3. Let (G,C) be an infinite, connected, locally finite network.

(a) A path in G is called a simple path if it includes any edge in G at most once.

(b) Let a ∈ V . A subset S ⊆ E of edges in G is called a cutset separating

vertex a from∞ if every infinite, simple path that starts in vertex a includes

at least one edge in S.

The following theorem extends Theorem 8.4.9 to infinite networks. It gives a criterion for

recurrence of a network.

Theorem 8.6.3 (Nash–Williams Inequality, infinite version). Let (G,C) be an in-

finite, connected, locally finite network and a ∈ V . If {Si}i≥1 is a sequence of finite,

pairwise disjoint cutsets that separate a from ∞, then

Reff(a,∞) ≥
∞∑
i=1

 ∑
{x,y}∈Si

C(x, y)

−1

. (8.31)

If the sum on the right-hand side of (8.31) is infinite, then random walk on (G,C)

is recurrent.

Proof. Consider an infinite, connected, and locally finite network (G,C), a vertex a ∈ V ,

and a sequence {Si}i≥1 of finite, pairwise disjoint cutsets that separate vertex a from

∞. We construct a sequence of networks {(G̃n, C̃n)}n≥1 as described (and with the same

notation as) on page 253 for which a ∈ Ṽ1 and

n⋃
i=1

Si ⊆ Ẽn for all n ≥ 1.
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Then for each of the finite networks (G̃n, C̃n) in the sequence, the union of cutsets
⋃n
i=1 Si

separates vertex a from bn. By Theorem 8.4.9,

Reff(a, bn) ≥
n∑
i=1

 ∑
{x,y}∈Si

C(x, y)

−1

. (8.32)

Taking the limit as n→∞ on both sides of (8.32) yields (8.31).

If the the right-hand side of (8.31) is infinite, then Reff(a,∞) =∞ which, by Proposition

8.6.1, implies that random walk on (G,C) is recurrent.

Example 8.6.4 (Recurrence of simple symmetric random walk on Z2). Consider simple

symmetric random walk on Z2 starting at the origin a. All conductances in the network

are considered to be 1.

In Figure 8.23 below, each set of points Yi that have a fixed (graph) distance i from the

origin is identified via connecting dashed lines that form a square. We have Yi = {(x, y) :

|x|+ |y| = i} for i ≥ 1. Any simple infinite path that starts at the origin a must pass at

some finite time from a vertex in set Yi to a vertex in set Yi+1 for all i ≥ 1. Therefore,

each (finite) subset of edges Si consisting of all edges that connect a vertex in Yi with a

vertex in Yi+1 is a cutset separating vertex a from ∞. By construction, the sets {Si}i≥0

are pairwise disjoint.

a

Figure 8.23

Applying Theorem 8.6.3, we get

Reff(a,∞) ≥
∞∑
i=1

|Si|−1. (8.33)

Since |Yi| = 4i, with four of the vertices in Yi contributing 3 edges and the rest of the

vertices in Yi contributing 2 edges to Si, we have

|Si| = 12 + 2(4i− 4) = 8i+ 4 .
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Thus, by (8.33),

Reff(a,∞) ≥
∞∑
i=1

1

8i+ 4
=∞

which shows that Reff(a,∞) =∞, and so simple symmetric random walk on Z2 is recur-

rent.

Note: Since Z can be viewed as a subnetwork of Z2, the result (once more) shows that

simple symmetric random walk on Z is also recurrent. �

The following definitions for infinite networks are analogous to Definitions 8.3.2 and 8.4.2

for finite networks.

Definition 8.6.4. Consider an infinite, connected, locally finite network (G,C) and

a ∈ V .

(a) A flow from a to ∞ is an anti-symmetric function I on the oriented edges

of (G,C) for which Kirchhoff’s node law holds, that is, for which∑
y:y∼x

I(x, y) = 0 for all x ∈ V \ {a} ,

and for which

‖I‖ :=
∑
y:y∼a

I(a, y) ≥ 0 .

If ‖I‖ = 1, we call I a unit flow from a to ∞.

(b) Let I be a flow from a to ∞. The energy E(I) dissipated by the flow I is

defined by

E(I) =
∑
{x,y}∈E

I(x, y)2R(x, y) .

Using the notion of energy dissipated by a flow, we arrive at the following criterion for

transience:

Proposition 8.6.4. Consider an infinite, connected, locally finite network (G,C).

If there exists a vertex a and a unit flow I from a to∞ with E(I) <∞, then random

walk on (G,C) is transient.

Proof. Let I be a unit flow on (G,C) from vertex a to ∞. Assume E(I) < ∞ and

consider a sequence {(G̃n, C̃n)}n≥1 of finite networks constructed from (G,C) in a manner
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described in Definition 8.6.1 and the paragraph following Definition 8.6.1. Without loss

of generality, we assume a ∈ G̃1. Then for all n ≥ 1, the restriction of I to the oriented

edges in G̃n defines a unit flow Ĩn from a to bn in (G̃n, C̃n). We have

Reff(a, bn) ≤ E(Ĩn) ≤ E(I) <∞ (8.34)

where the first inequality in (8.34) follows from Proposition 8.4.4 and Theorem 8.4.5.

Hence

lim
n→∞

Reff(a, bn) = Reff(a,∞) ≤ E(I) <∞ .

By Proposition 8.6.1, random walk on (G,C) is transient.

Example 8.6.5 (Transience of simple symmetric random walk on Zd for d ≥ 3). Here we

assume that all edge conductances are equal to 1. We start with simple random walk on

Z3 and prove its transience by constructing a flow I on Z3 with finite energy E(I). The

argument we present here is taken from [23].

Recall the process called Pólya’s urn which was introduced in Section 1.5. Here we will

consider a three-color Pólya’s urn. The process starts with three balls of distinct color,

one red, one green, and one blue ball. At each time step, a ball is drawn uniformly at

random from the urn, its color noted, and then, together with a new ball of the same color,

replaced into the urn. The random vector (Rn, Gn, Bn) gives the number of red, green,

and blue balls at time n ≥ 0. We have (R0, G0, B0) = (1, 1, 1) and (Rn, Gn, Bn) ∈ (Z+)3

with Rn +Gn +Bn = n+ 3.

By Proposition 1.5.2, for all n ≥ 1, the random vector (Rn, Gn, Bn) is uniformly distributed

over the set Vn = {(x, y, z) ∈ (Z+)3 : x + y + z = n + 3}. Note that |Vn| is equal

to the number of ways in which n indistinguishable balls can be distributed over three

distinguishable (colored) boxes, so

|Vn| =
(
n+ 2

2

)
. (8.35)

We define a flow I on Z3 from a = (1, 1, 1) to ∞ in the following way: For an oriented

edge (u, v) in the first octant that points in the positive direction of either the x-axis, the

y-axis, or the z-axis, we set

I(u, v) = P(the urn process moves from u to v) ,

I(v, u) = −I(u, v) ,

and define I to be 0 on all other oriented edges in Z3. This is indeed a flow since

‖I‖ =
∑
v:v∼a

I(a, v) = 1
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and for u ∈ (Z+)3, u 6= a,∑
w:w∼u
I(w,u)>0

I(w, u) = P(the urn process visits u) =
∑
v:v∼u
I(u,v)>0

I(u, v) , (8.36)

and therefore ∑
v:v∼u

I(u, v) = 0 .

We now compute E(I). From (8.36) and (8.35) we have

∑
w:w∼u
I(w,u)>0

I(w, u)2 ≤

 ∑
w:w∼u
I(w,u)>0

I(w, u)

2

= P(the urn process visits u)2

=

(
n+ 2

2

)−2

.

Thus we get

E(I) =
∑
{w,u}

I(w, u)2

=
∞∑
n=1

∑
u∈Vn

∑
w:w∼u
I(w,u)>0

I(w, u)2

≤
∞∑
n=1

(
n+ 2

n

)(
n+ 2

2

)−2

=
∞∑
n=1

2

(n+ 2)(n+ 1)
<∞ .

By Proposition 8.6.4, simple random walk on Z3 is transient.

Finally, note that Z3 is a subgraph of Zd for d ≥ 3. Any flow I on a subgraph H of a

graph G can be extended to a flow on G by simply defining the extended flow to be 0 on

all oriented edges that are in G but not in H. This proves transience for simple random

walk on Zd for d ≥ 3. �
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Remark 8.6.5. The converse of the statement of Proposition 8.6.4 is also true:

If a connected, locally finite network (G,C) is transient, then there exists a unit

flow I on the network for which E(I) < ∞. We omit the proof (see [24] for a

reference). Using this result, and therefore without the need to construct a specific

flow of finite energy which may be difficult, we once again conclude (recall that we

have already proved this earlier) that if random walk on a subnetwork (G∗, C∗) of a

network (G,C) is transient, then random walk on the larger network (G,C) is also

transient. And, equivalently, if random walk on (G,C) is recurrent, then random

walk on any subnetwork (G∗, C∗) is also recurrent.

Exercises

Exercise 8.1. Show that the Markov chain with state space S = {a, b, c, d} and transition

matrix

P =

a b c d


a 1/6 1/6 0 2/3

b 1/5 2/5 2/5 0

c 0 1/3 1/6 1/2

d 4/9 0 1/3 2/9

is reversible and therefore can be interpreted as a random walk on a weighted graph. Find

a weighted graph for this Markov chain for which all weights are integers.

Exercise 8.2. Consider an irreducible birth/death chain (Xn)n≥0 on state space S =

{0, 1, ..., N}. The transition probabilities are

Px,x+1 = px for 0 ≤ x ≤ N − 1

Px,x−1 = qx for 1 ≤ x ≤ N

with px + qx = 1 and px, qx > 0 for all x. Figure 8.24 shows the transition graph.

0 1 2 N

p0 p1

q1 q3 qNq2

p2 pN−1

Figure 8.24: Birth/death chain



Exercises 262

We have shown in Section 7.2 that (Xn)n≥0 is reversible. Describe (Xn)n≥0 as a random

walk on a weighted graph. Describe such a weighted graph by giving an explicit formula

for the weight of each edge.

Exercise 8.3. Consider the Ehrenfest chain with N particles (see Section 1.5).

(a) Describe the process as a random walk on a network (G,C).

(b) Let N be even. Use the network interpretation to compute a formula for

PN/2(T 0 < TN/2) .

Exercise 8.4. Consider simple random walk on the graph in Figure 8.25.

a

b

x

Figure 8.25

Compute the following:

(a) Ea(T b),
(b) Pa(T b < T a),

(c) Ea(V x
T b

) (the expected number of visits to x before the first visit to b, given that the

walk starts in a),

(d) Reff(x, b).

Exercise 8.5. A graph is called d-regular if every vertex has degree d. Let G(V,E) be

a finite, connected, d-regular graph with n vertices. Consider simple random walk on G.

Find a positive integer N such that the probability that simple random walk on G of

length N has not yet reached all vertices on the graph is at most 1
10

.

Exercise 8.6. Consider G(V,E) and assume there exists an edge e = {x0, y0} with e ∈ E
such that the removal of e results in two disjoint subgraphs Gx0 and Gy0 with respective

edge sets Ex0 and Ey0 .

(a) Assuming all edge weights are equal to 1, show that Reff(x0, y0) = 1.

(b) Consider simple random walk on G(V,E). Use the result from part (a) to prove

that

Ex0(T y0) = 2|Ex0|+ 1.
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Exercise 8.7. Consider simple random walk on a finite, connected graph G(V,E) with

|V | = n. Let x, y ∈ V and assume {x, y} ∈ E. Show that Ex(T y) is at most O(n2). Is

this necessarily true if x and y are not connected by an edge? If it is not true in general,

give an example where Ex(T y) is of strictly higher order than Θ(n2).

Exercise 8.8. Consider a finite, irreducible network (G,C) with vertex set V and edge

set E. Foster’s theorem states that∑
{x,y}∈E

Reff(x, y)C(x, y) = |V | − 1 .

Prove Foster’s theorem.

Exercise 8.9. Let (G,C) be a finite, irreducible network, and let a, b ∈ V . Consider the

unique voltage Φ1 on V with boundary values Φ1(a) = 1 and Φ1(b) = 0. Assume there

exist two vertices x, y ∈ V \ {a, b} for which Φ1(x) = Φ1(y) and that e = {x, y} is in the

edge set E of G.

(a) Show that removing the edge e from E does not change the voltage at any vertex.

More precisely, consider the slightly altered network (G′, C ′) that arises from (G,C)

by deleting the edge e from the graph and keeping the weights on all remaining

edges the same. Furthermore, consider the unique voltage Φ′1 on V ′ for the network

(G′, C ′) with boundary values Φ′1(a) = 1 and Φ′1(b) = 0. Show that Φ1(x) = Φ′(x)

for all x ∈ V .

(b) Conclude from part (a) that Reff(a, b) = R′eff(a, b), that is, deleting from the network

an edge whose endpoints have equal voltage does not change the effective resistance.

Exercise 8.10. Let (G,C) be a finite, irreducible network, and let a, b ∈ V . Consider the

unique voltage Φ1 on V with boundary values Φ1(a) = 1 and Φ1(b) = 0. Assume there

exist two vertices x, y ∈ V \ {a, b} for which Φ1(x) = Φ1(y).

(a) Show that combining the two vertices x and y into a single vertex z does not change

the voltages in the system. More precisely, consider the slightly altered network

(G′, C ′) that arises from (G,C) by combining the two vertices x and y into a single

vertex z and deleting any possibly resulting self-loops. All weights remain the

same, except for weights of edges (from the original network) that have x or y as an

endpoint, in which case we add their weights: We set C ′(z, v) = C(x, v) + C(y, v)

for v 6= x, y. Furthermore, consider the unique voltage Φ′1 on V ′ for the network

(G′, C ′) with boundary values Φ′1(a) = 1 and Φ′1(b) = 0. Show that Φ1(v) = Φ′1(v)

for all v 6= z and Φ′1(z) = Φ1(x) = Φ1(y).
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(b) Conclude from part (a) that Reff(a, b) = R′eff(a, b), that is, combing vertices that

have equal voltage (and deleting any possibly resulting self loops) does not change

the effective resistance.

Exercise 8.11. Let (G,C) be a finite, irreducible network. Show that the effective

resistance obeys the triangle inequality, that is, show that for all a, b, c ∈ V ,

Reff(a, c) ≤ Reff(a, b) +Reff(b, c).

Exercise 8.12. Consider a complete graph Kn with n vertices and let x, y be two distinct

vertices. Compute the effective resistance Reff(x, y).

Exercise 8.13. Consider simple random walk on the graph in Figure 8.26. Compute the

commute time ta↔b.

a b

Figure 8.26

Exercise 8.14. Let Kn be a complete graph with n vertices. Show that the cover time

tcov for simple random walk on Kn is of order O(n lnn).

Exercise 8.15. Consider a chain graph G with N vertices as shown in Figure 8.27.

Consider simple random walk starting at x for some 1 < x < N .

(a) Compute Ex(T x+1). (b) Compute the cover time tcov
x .

x1 N

Figure 8.27

Exercise 8.16. Again, consider a chain graph G with N vertices as shown in Figure 8.27.

Assume that simple random walk starts at vertex 1. Let V x
TN be the number of visits to

vertex x before the walk reaches vertex N for the first time. Show that

E1(V 1
TN ) = N − 1

and

E1(V x
TN ) = 2(N − x) for 2 ≤ x ≤ N − 1 .
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Exercise 8.17. Consider simple random walk on the 3-dimensional unit cube Z2×Z2×Z2.

See Figure 1.7. Let a = (0, 0, 0) and c = (1, 1, 1).

(a) Show that Reff(a, c) = 5/6.

(b) Compute the expected hitting time Ea(T c).

Exercise 8.18. Consider simple random walk on the 3-dimensional unit cube Z2×Z2×Z2

as in Exercise 8.17. In addition to a = (0, 0, 0) and c = (1, 1, 1), consider the vertex

b = (1, 1, 0).

(a) Compute the probability Pc(T a < Tb).

(b) Compute the expected hitting time Ea(Tb).

Exercise 8.19. Recall the features of a lollipop graph. It consists of a complete graph

Km of m vertices and a chain graph of k vertices that is attached to Km. Figure 8.28

shows an example with m = 5 and k = 7. Consider the vertices c and v as labeled in

Figure 8.28 and any vertex a in Km with a 6= c. For general m and k, find formulas for

(a) Ea(T v) and (b) Ec(T a).

c v
k vertices

Km

a

Figure 8.28: Lollipop graph

Exercise 8.20. Consider an infinite connected network (G,C) for which the edge set E

is countably infinite. Show that random walk on the network is positive recurrent if and

only if ∑
{x,y}∈E

C(x, y) <∞ .

Exercise 8.21. Consider an irreducible birth/death chain (Xn)n≥0 on infinite state space

S = N0. For the transition probabilities, we assume p0 = 1, and px+qx = 1 and px, qx > 0

for all x ≥ 1. See the transition graph in Figure 8.29. Describe (Xn)n≥0 as a random

walk on an infinite network. Use this viewpoint to prove a criterion for transience of

(Xn)n≥0 in terms of the transition probabilities px, qx, x ≥ 1.
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10 2 3

p0

q1

p1 p2

q2 q4

p3

q3

Figure 8.29: Infinite-state birth/death chain

Exercise 8.22. Fix a positive integer k. An infinite rooted k-ary tree is a tree that has a

distinguished vertex 0 (the root) which has degree k and for which all other vertices have

degree k+ 1. See Figure 8.30 for a picture of a binary (2-ary) tree. Let R
(k)
eff (0,∞) denote

the effective resistance from 0 to infinity for a k-ary tree. Compute R
(k)
eff (0,∞). What can

we conclude about transience or recurrence of simple random walk on a k-ary tree?

0

Figure 8.30: A binary tree. The graph continues to infinity in the same manner.

Exercise 8.23. Consider a network (G,C) whose underlying graph is an infinite rooted

tree. Let Vn ⊂ V denote the set of all vertices that have distance n from the root 0. For

all n ≥ 1, we assume that edges that have one endvertex in Vn−1 and the other endvertex

in Vn have the same conductance Cn.

(a) Find a sufficient condition (in terms of Cn and |Vn|, n ≥ 1) for recurrence of random

walk on (G,C).

(b) Fix k ∈ N. Consider the special case where G is an infinite k-ary rooted tree and

Cn = λ−n for some λ > 1. Find a necessary and sufficient condition on λ under

which random walk on (G,C) is recurrent.
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Markov Chain Monte Carlo

The basic problem in Markov chain Monte Carlo can be described as follows. Given a

probability distribution π on a large and often intractable state space S, how can we draw

samples from this distribution π? A Markov chain Monte Carlo algorithm constructs a

Markov chain on S that is fairly easy to simulate and that converges to the desired

distribution π. Running this Markov chain for a sufficiently long time and then taking

samples will produce (almost) samples from π. We address the relevant and important

topic of convergence rates of Markov chains (for how long should we run the algorithm?)

in Chapter 11.

9.1 MCMC Algorithms

9.1.1 Metropolis-Hastings Algorithm

The goal is to construct an irreducible, aperiodic, positive recurrent Markov chain on

a given state space S that has a desired stationary distribution π. One would like the

transition probabilities to have the form

Pxy = a(x, y)Txy

for x, y ∈ S, where the Txy are transition probabilities for an easy-to-implement proposal

chain T on S. The values a(x, y) are acceptance probabilities according to which state

y, if proposed by the proposal chain T, will either be accepted or rejected. In the latter

case, the chain remains in state x.

We now describe the algorithm in more detail. Assume the target distribution π is

strictly positive on S. (If not, simply delete from the state space all states x for which

π(x) = 0.) Choose an irreducible proposal chain with transition matrix T that is easy to

267
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simulate. From this, the Metropolized chain (Xn)n≥0 with transition matrix P arises

via the following algorithm.

Metropolis-Hastings Algorithm:

1. Start in any state.

2. Given that the chain is currently in state x, for the next step choose a state y

according to the transition probabilities Txy from the proposal chain.

3. Decide whether to accept y or to reject y and stay in x with the use of the acceptance

probability

a(x, y) = min(
π(y)Tyx
π(x)Txy

, 1) .

That is, if a biased coin for which P(H) = a(x, y) lands on heads, accept the

proposed state and move to y. If the biased coin lands on tails, reject the proposed

state and remain in the current state x. Thus the transition probabilities Pxy for

the Metropolized chain are:

for x 6= y : Pxy =


0 if Txy = 0

Txy a(x, y) if Txy 6= 0

for x = y : Pxx = 1−
∑

y 6=x Pxy .

Note that for this algorithm one only needs to know the stationary distribution π up to

proportionality. The normalizing constant for π cancels out in the computation of a(x, y).

This is a great advantage of the algorithm. Often, in situations where the state space S
is extremely large, its actual size may not be known. If, for example, we would like to

sample from the uniform distribution on S, we can simply work with any π ∝ (1, 1, ..., 1)

in the algorithm (the symbol “∝” stands for “is proportional to”).

Proposition 9.1.1. Let (Xn)n≥0 be constructed as in the Metropolis-Hastings al-

gorithm. Then (Xn)n≥0 is a positive recurrent and reversible Markov chain with

stationary distribution π.

Proof. We assume π(x) > 0 for all x ∈ S. We will first show that the detailed balance

equations (7.2) hold for the transition probabilities Pxy and the distribution π. For x = y,

there is nothing to show.

Assume x 6= y and Pxy = 0. Then it must be that either Txy = 0, in which case a(y, x) = 0,

and thus Pyx = 0 as well, or that Txy 6= 0 but a(x, y) = 0, in which case Tyx = 0 and
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therefore Pyx = 0 as well. This shows that for Pxy = 0, the detailed balance equations

π(x)Pxy = π(y)Pyx hold.

Assume x 6= y and Pxy 6= 0. Then Txy 6= 0 and Tyx 6= 0. We distinguish two cases.

Case 1: a(x, y) ≥ 1. Then Pxy = Txy and a(y, x) ≤ 1. Thus

π(x)Pxy = π(x)Txy = π(x)Txy
π(y)Tyx
π(y)Tyx

= π(y)Tyx a(y, x) = π(y)Pyx .

Case 2: a(x, y) < 1. Then a(y, x) ≥ 1. We can apply the same argument as for Case 1,

in reverse order, and get again

π(y)Pyx = π(x)Pxy .

Since the detailed balance equations hold for all x, y ∈ S, P is reversible and π is a

stationary distribution for P.

Notes: (1) The Metropolis-Hastings algorithm constructs a reversible Markov chain P.

(2) Using an irreducible proposal chain T for which Txy > 0 ⇐⇒ Tyx > 0 will imply

Txy > 0⇒ Pxy > 0. In this case, irreducibility of the proposal chain implies irreducibility

of the Metropolized chain.

(3) To show aperiodicity of the Metropolized chain, it suffices to show that at least one

state x has positive holding probability Pxx. We can show this by showing that for at

least one pair of states x, y, we we have a(x, y) < 1. Assume a(x, y) ≥ 1 for all x, y ∈ S.

But then Pxy = Txy for all x, y ∈ S, and so π is already stationary for the proposal chain,

and there is no need for the construction of a Metropolized chain P in the first place.

Example 9.1.1 (Simulating a Poisson distribution). Here the state space is S = N0 and

the target distribution π is defined by π(x) = e−λλn

n!
for n ∈ N0. As an easy to simulate

proposal chain, we can use simple symmetric random walk on N0 with reflecting boundary

at 0. So

Tn,n+1 = Tn,n−1 =
1

2
for n ≥ 1 and P01 = P00 =

1

2
.

The acceptance probabilities are

a(n, n+ 1) = min( λ
n+1

, 1) for n ≥ 0

a(n, n− 1) = min(n
λ
, 1) for n ≥ 0 .
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The transition probabilities of the Metropolized chain P on N0 are

Pn,m =



1
2

min( λ
n+1

, 1) for n ≥ 0,m = n+ 1

1
2

min(n
λ
, 1) for n ≥ 1,m = n− 1

1− 1
2
[min( λ

n+1
, 1) + min(n

λ
, 1)] for n ≥ 1, n = m

1− 1
2

min(λ, 1) for n = m = 0

0 otherwise .

Clearly, the chain P is irreducible and aperiodic. Figure 9.1 shows the result from three

simulations of this Metropolis chain P for three different running times, namely for k =

103, k = 104, and k = 105 number of steps. The Poisson parameter for this simulation

is λ = 5. (The simulation was done with the software package R.) The histogram for

each simulation was scaled to a density histogram. The red overlaid dots represent the

actual Poisson probabilities for Poisson(5). We can see from the three simulations that

with increasing number of steps, the distribution of the Metropolis chain closer and closer

approximates the target (stationary) distribution π = Poisson(5). �

103 steps 104 steps 105 steps

Figure 9.1: Three simulations of a Metropolis chain whose target distribution is Poisson(5)

Example 9.1.2 (Random walk on a connected graph). Consider a finite graph G(V,E)

which could model a social network, a computer network, etc. Suppose one does not

know the overall size and global structure of the network, but for each vertex one knows

its immediate nearest neighbors (for example, friends in a social network, linked websites

to a given website). One can therefore choose one of its neighbors uniformly at random
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and move there next. This is an example of simple random walk on a graph. If the graph

is connected, the Markov chain is irreducible. The transition probabilities are

Tvw =

{
1

deg(v)
if w ∼ v

0 otherwise ,

and the stationary distribution for simple random walk on the connected graph is

ν(v) =
deg(v)

2|E|
for v ∈ V

(recall Example 7.2.2). If the graph is not a regular graph, that is, if not every vertex v

has the same degree, then in the long run, states with higher degree will be visited more

often than states with lower degree.

Consider a function f : V → R that models a certain property of each vertex v. We

would like to assess the average value favg = 1
|V |
∑

v∈V f(v) of this property across the

whole network. But |V | may be extremely large (and not known), so a direct computation

of favg may be impossible. A Monte Carlo approach to computing, or at least to closely

approximating, favg proceeds as follows:

1. Construct an irreducible Metropolized chain (Xn)n≥0 on G(V,E) whose target distri-

bution π is uniform distribution on V , so π ∝ (1, 1, ..., 1). In this case the acceptance

probabilities are

a(v, w) =
π(w)Twv
π(v)Tvw

=
deg(v)

deg(w)
,

and hence the transition probabilities are

Pvw =


0 if w � v

1

deg(v)
min(

deg(v)

deg(w)
, 1) if w ∼ v .

Notice that the acceptance probabilities bias the walk against moving towards

higher-degree vertices (which would happen for unaltered simple random walk on

the graph).

2. Simulate (Xn)n≥0 and apply the Ergodic theorem for irreducible Markov chains

(Theorem 3.1.1) to approximate favg. Recall that the Ergodic theorem states

lim
n→∞

1

n

n−1∑
k=0

f(Xk) = E(f(X)) with probability 1 ,

where X ∼ π and π is the unique stationary distribution. For our case this yields

lim
n→∞

1

n

n−1∑
k=0

f(Xk) = favg with probability 1 .
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As an additional question, we may want to find vertices at which f takes its maximum

(or minimum) value. Such an optimization problem can be solved using a similar Monte

Carlo approach. For this case we would choose a target distribution π that puts high

probability on vertices v at which f attains the extreme value. We return to this question

in Section 9.2. �

9.1.2 Gibbs Sampler

The Gibbs sampler, also called Glauber dynamics, is a Monte Carlo algorithm for

sampling from probability distributions π on high-dimensional spaces.

Let C be a finite set. We consider the elements in C as labels or colors. We have an

underlying graph G(V,E) with large vertex set V . Each vertex v ∈ V is assigned a label

c ∈ C according to some rule. The collection of all such possible assignments makes up

the state space S ⊆ C|V |, which is also called the configuration space. A configuration

(or state) x ∈ S is a function

fx : V → C .

The Gibbs sampler is a Markov chain on the configuration space that, at each step,

updates only one coordinate of the current state x in a prescribed way. The following

describes the steps of the algorithm.

Gibbs Sampler algorithm:

Let I = {1, 2, ..., N}, and consider a strictly positive probability distribution π (the target

distribution) on S ⊆ CN . Assume the chain starts in state x = (x1, x2, ..., xN) with xi ∈ C,
i ∈ I.

1. Choose an index k ∈ I, independently of all previously chosen indices, according to a

fixed, strictly positive probability distribution η on I (η is often uniform distribution

on I).

2. Choose the new state y by updating the kth coordinate of x in the following way.

Choose y from the probability distribution π on S conditioned on the set of config-

urations that agree with x at all indices I \ {k}. Let

Sx,k = {y ∈ S : xi = yi for i ∈ I and i 6= k}

denote the set of all states y that agree with x at all indices, except possibly at

index k. With this notation, the transition probabilities of the Gibbs sampler are
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Pxy =


η(k) π(y)

π(Sx,k)
if y ∈ Sx,k and xk 6= yk

0 if x and y differ at more than one index .

Clearly, for all x ∈ S, Pxx 6= 0, so the chain is aperiodic. Let x,y ∈ S and assume that

y ∈ Sx,k for some k ∈ I. It follows that x ∈ Sy,k and Sx,k = Sy,k. Using this equality, we

verify that the detailed balance equations hold:

π(x)Pxy = π(x)η(k)
π(y)

π(Sx,k)
= π(y)η(k)

π(x)

π(Sy,k)
= π(y)Pyx .

If the Gibbs sampler with transition probabilities Pxy as defined above is also irreducible

(which needs to be checked separately in each case), it will in fact converge to the target

distribution π.

Example 9.1.3 (Disk packing). This model is also known as the hard-core model in the

literature. It is used in chemistry and statistical physics where it models a liquid or a gas

whose particles are balls of positive radius who cannot overlap. The model starts with a

graph G(V,E) and the label set C = {0, 1}. Label 1 stands for “occupied” and label 0

stands for “free”. A label is assigned to each vertex in such a way that no two adjacent

vertices, that is, vertices connected by an edge, are occupied. Such a configuration is called

a feasible configuration. The state space S is the set of all feasible configurations. The

below graph gives an example of a possible configuration where the graph is a rectangle

in Z2. Black circles indicate occupied sites and, white circles indicate free sites. Figure

9.2 shows a possible configuration.

Figure 9.2: A configuration for disk packing on a square grid

In applications, the graph will have a large number of vertices which makes the state

space S ⊂ {0, 1}V extremely large. A natural quantity of interest is the average number

of occupied sites. An exact computation would require an enumeration of all feasible
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configurations x and counting their number N(x) of occupied sites. Such a brute-force

calculation may be very difficult and computationally costly, even prohibitive. A Monte

Carlo approach provides a solution. Construct an irreducible, aperiodic Markov chain

(Xn)n≥0 on S that converges to uniform distribution on S. Sampling from the simulated

(approximate) uniform distribution will allow an estimate for E(N(X)) (where X ∼
Unif(S)) with the use of the Ergodic theorem which states

lim
n→∞

1

n

n−1∑
k=0

N(Xk) = E(N(X)) .

The Gibbs sampler applied to the hard-core model proceeds in the following way. Assum-

ing the current state is x,

1. choose a vertex v uniformly at random (and independently from all previous choices)

from the vertex set v;

2. if at least one neighbor of v is occupied (which implies v has label 0), stay at x;

3. if all neighbors of v are labeled 0, choose with equal probability a new label 1 or 0

and update vertex v with the new label. Leave the remaining vertices unchanged.

This algorithm results in the transition probabilities

Pxy =


0 if x and y differ at more than one vertex

1
2|V | if x and y differ at exactly one vertex

1− n(x)
2|V | if x = y

where n(x) denotes the number of nearest neighbors of x, that is, the number of feasible

configurations z that differ from x at exactly one vertex. �

In Exercise 9.2, the reader is asked to prove irreducibility, aperiodicity, and reversibility

(with respect to uniform distribution) of the Gibbs sampler for disk packing.

Example 9.1.4 (Proper graph coloring). This problem has many applications in chem-

istry, scheduling problems, social networking, and other areas. Let G(V,E) be a finite,

connected graph and C a set of “colors” with |C| = k. A proper k-coloring x of the graph

G is an assignment of colors to the vertices of G with the property that no two adjacent

vertices have the same color. See Figure 9.3. Let S be the set of all proper k-colorings of

G. We have S ⊂ CV . In applications, one would often like to sample from the uniform

distribution on S.
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Figure 9.3: A proper graph coloring

A brute-force approach of enumerating all possible graph colorings for a given graph and

a set of colors is likely not feasible due to the often enormous size of S. Note that for a

given graph G and k colors, a proper coloring may not exist. For k colors with k ≤ |V |,
proper graph colorings exist, and often a lot fewer colors are needed, depending on the

graph structure. For the complete graph with |V | = n, we do need n different colors. For

bipartite graphs, only two colors are needed.

The Gibbs sampler applied to proper graph coloring proceeds in the following way. As-

suming the current state is the proper k-coloring (configuration) x,

1. choose a vertex v uniformly at random (and independently from all previous choices)

from the vertex set V ;

2. choose a new color uniformly at random from the subset of colors that are “allow-

able” colors for v, that is, all colors not attained by any neighbor of v;

3. update vertex v with the new color (and leave all other vertices unchanged).

This algorithm results in the transition probabilities

Pxy =


0 if x and y differ at more than one vertex

1
|V ||Sx,v | if x and y differ at exactly vertex v

where

Sx,v = {y ∈ S : x(w) = y(w) for w ∈ V and w 6= v}

is the set of all proper k-colorings that agree with x, except possibly at vertex v. �

In Exercise 9.6, the reader is asked to prove that the Gibbs sampler for proper graph

coloring is aperiodic and reversible with respect to uniform distribution on S. Irreducibil-

ity is often more difficult to determine and depends on the topological properties of the

underlying graph G and the number k of available colors. However, for sufficiently large

k, more specifically if

k ≥ max{deg(v) : v ∈ V }+ 2 ,
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irreducibility is guaranteed.

Remark 9.1.2. The chromatic number χ(G) of a graph G is the minimal num-

ber of colors needed to properly color the graph. It is often a difficult problem to

determine χ(G) for a given graph.

Four Color Theorem. Any planar graph, that is a graph that can be drawn

in the plane without any of its edges crossing each other, has chromatic num-

ber at most four. Francis Guthrie at University College London, England, first

conjectured in 1852 that four colors suffice to color any map in a way that two

countries sharing a boundary (that is a curve segment, not just a point) do not

share a color. The theorem was proved much later, in 1976, by Kenneth Appel and

Wolfgang Haken at U. Illinois.

9.2 Stochastic Optimization and Simulated Anneal-

ing

We start with a large state space S and a function f on S. The general problem is

to find the global maximum or global minimum of f on S. For large state spaces, an

exhaustive search may be computationally prohibitive. And often problems of this type

are combinatorial in nature for which a deterministic algorithm for enumerating the states

may not even exist. An additional difficulty in the search of a global extremum could arise

if f has a large number of local extrema on S. While exact solutions may be elusive in

many situations, Monte Carlo methods have often been very successful in producing close

to optimal solutions to difficult, large-scale optimization problems.

Example 9.2.1 (The knapsack problem). This is a famous problem in combinatorial

optimization. We have n items labeled 1, 2, ..., n. Each item i, for 1 ≤ i ≤ n, has a weight

wi and a value vi attached to it. Suppose we would like to put a selection of these items

into a knapsack that allows a total upper weight limit of W . Find an optimal selection of

items, that is, a selection that maximizes the total value of the items in the knapsack.

We identify any selection A ⊆ {1, 2, ..., n} of items with a binary vector

z = (z1, ..., zn) ∈ {0, 1}n

where zi = 1 iff item i ∈ A. The state space S, which we call the set of feasible solutions,

is the set

S = {z ∈ {0, 1}n :
n∑
i=1

wizi ≤ W} .
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We define the value function f on S by

f(z) =
n∑
i=1

vizi .

The optimization problem is to find

max{f(z) : z ∈ S} .

This problem has been widely studied in computer science. It is known to be NP-complete

as a decision problem. No efficient algorithm is known (or is likely to exist) for an exact

solution for the knapsack problem for large n. �

The basic idea for a Monte Carlo approach to solve an optimization problem of this kind

is to simulate a Metropolis chain on S that converges to a stationary distribution π which

puts high probability on states with extreme values of f . A standard distribution π that

is used in this approach is the so-called Boltzmann distribution.

Definition 9.2.1. Let S be a finite set, f : S → R a function on S, and T > 0

a parameter. The Boltzmann distribution πf,T with energy function f and

temperature parameter T is defined by

πf,T (s) =
1

Zf,T
e−f(s)/T for s ∈ S

where Zf,T =
∑

s∈S e
−f(s)/T is the normalizing constant that makes πf,T a probability

distribution.

The energy function f in the Boltzmann distribution is the function f that arises from

the given optimization problem. For a fixed temperature T , the Boltzmann distribution

puts higher probability on states with relatively small values of f than on states with

relatively large values of f . If the problem is to maximize f , then one would work with

−f as the energy function instead. Note that for high temperature T , the distribution

πf,T is almost uniform on S. The lower the temperature T , the more πf,T concentrates

near states that minimize f .

Simulated Annealing

The idea of simulated annealing is to run a Metropolis chain for which one lets the

temperature parameter T change with time. One starts with a high temperature T1 and

runs a Metropolis chain with target distribution πf,T1 for N1 time units. Since at high

temperature T1 the target distribution is almost uniform, the Markov chain will widely
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explore the state space during that time (and not prematurely get trapped near a local

extremum). After time N1, one lowers the temperature to T2 with T2 < T1 and allows

the Metropolis chain to run with target distribution πf,T2 until time N2. Due to the lower

temperature, πf,T2 concentrates more on states that minimize f . After time N2 one lowers

the temperature to T3 with T3 < T2, and so on. Theoretical results in this area confirm

that under sufficiently slow “cooling”, the probability that the Metropolis chain will be

in an f -minimizing state at time n tends to 1 as n→∞.

A specific choice of a sequence of temperatures T1 > T2 > · · · with

lim
i→∞

Ti = 0

and corresponding sequence of times N1 > N2 > · · · is called a cooling schedule. Note

that in simulated annealing, due to the change of the target distribution over time, the

transition probabilities change over time as well. The result is a time-inhomogeneous

Markov chain.

Aside: The term annealing is borrowed from metallurgy where it refers to a process of

first heating and then slowly, and in a controlled way, cooling a metal to improve its

physical properties.

Example 9.2.2 (The traveling salesman problem). The traveling salesman problem is

another famous optimization problem that has a long history of being studied. It has

the same computational complexity as the knapsack problem. Suppose there is a list of n

cities {1, 2, ..., n}, and for each (unordered) pair i, j of cities, a known distance dij between

them. If dij = 0, then there is no possible direct connection between cities i and j. The

problem is to find the shortest possible route for a salesman to visit each city exactly

once, and in the end return to the city he started from.

The given connectivity/distance between the n cities is represented by a weighted, non-

directed graph G(V,E) with n vertices whose edges and edge weights represent the given

distances between the cities. We assume G(V,E) is connected. A tour that visits each

vertex in a connected graph exactly once and returns to its starting point is called a

Hamiltonian cycle for the graph. Figure 9.4 shows an example with five cities and two

(not necessarily shortest) Hamiltonian cycles, one in purple and one in blue.

The traveling salesman problem is equivalent to finding a permutation σ ∈ Sn (where Sn

is the permutation group of n distinguishable objects) that minimizes the length d(σ) of

the tour

d(σ) = dσ(n),σ(1) +
n−1∑
i=1

dσ(i),σ(i+1) (9.1)
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Figure 9.4: Two Hamiltonian cycles for a road system between 5 cities

and for which dσ(i),σ(i+1) > 0 , dσ(n),σ(1) > 0 . For large n, a brute force approach of

checking all possible routes is computationally not feasible since |Sn| = n! (which grows

super-exponentially in n). To be precise, considering that the starting city stays fixed,

and that the reverse tour has the same length, we need to minimize the length d(σ) over
(n−1)!

2
permutations σ.

We now describe a Metropolis chain that can be used in a simulated annealing algorithm

for a solution to the traveling salesman problem. For simplicity we will assume that the

underlying graph is complete, that is, dij > 0 for all i, j ∈ V . The state space is S = Sn.

We declare two permutations σ, σ′ ∈ S to be neighbors, denoted by σ ∼ σ′, if σ′ arises

from σ by reversing a substring of the tour. More precisely, if σ = (σ1, σ2, ..., σn), then

for 1 ≤ i < j ≤ n, the corresponding substring is (σi, σi+1, ..., σj). Reversing the order of

the substring (σi, σi+1, ..., σj) in σ yields the new permutation

σ′ = (σ1, ..., σi−1, σj, σj−1, ..., σi, σj+1, ..., σn) .

As an example, consider σ = (1, 2, ..., n). The tour σ:

1→ 2→ · · · →
reverse!︷ ︸︸ ︷

i→ · · · → j → · · · → n→ 1

becomes the tour σ′:

1→ 2→ · · · → (i− 1)→
reversed︷ ︸︸ ︷

j → (j − 1)→ · · · → (i+ 1)→ i→ (j + 1)→ · · · → n→ 1 .

Figure 9.5 shows two tours that are considered neighbors (the example is for 9 cities and

i = 4, j = 7). Notice that in Figure 9.4, the purple tour a →
reverse!︷ ︸︸ ︷

e→ c→ b → d → a and

the blue tour a→
reversed︷ ︸︸ ︷

b→ c→ e→ d→ a are also neighbors.

The algorithm will only allow one-step transitions between neighbors. The target distri-

bution for the Metropolis chain is the Boltzmann distribution from Definition 9.2.1 with
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Figure 9.5: Two neighboring tours for 9 cities

energy function f(σ) = d(σ) from (9.1). At each step, the proposal chain T chooses two

indices i, j uniformly at random from {1, 2, ..., n} with i < j. Given that the current

state is σ, the proposal chain proposes the neighboring permutation σ′ constructed as

described above. In other words, the proposal chain T is simple random walk on a graph

with vertex set S = Sn (each vertex is identified with a permutation σ ∈ Sn) and for

which each vertex has
(
n
2

)
neighbors.

For fixed temperature T , we get the following transition probabilities Pσ,σ′ for the Metropo-

lis chain:

Pσ,σ′ =



2

n(n− 1)
min

(
e(d(σ)−d(σ′))/T , 1

)
if σ, σ′ are neighbors

0 if σ 6= σ′ and σ, σ′ are not neighbors

1−
∑

σ”:σ”∼σ

2

n(n− 1)
min

(
e(d(σ)−d(σ”))/T , 1

)
if σ = σ′ .

Note that for this algorithm,

d(σ)− d(σ′) = di−1,i + dj,j+1 − di−1,j − di,j+1

which shows that the computation of d(σ)− d(σ′) does not depend on n, and so there is

low computational cost involved in this step of the algorithm.

The last step for implementing the algorithm is to decide on a cooling schedule T1, T2, ...

with corresponding N1, N2, .... Finding a suitable cooling schedule for simulated annealing

often requires some experimentation. �
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Exercises

Exercise 9.1. Consider a standard 8× 8 chessboard as shown in figure 9.6 below.

Figure 9.6: Standard chessboard

A king can move one square at a time in any direction (horizontally, vertically, or diag-

onally) that is available from his current location. Construct transition probabilities for

the king’s moves on the chessboard that guarantee that, in the long run, the king will

spend equal percentage of time on each square of the board.

Exercise 9.2. Consider the disk-packing model introduced in Example 9.1.3. Prove that

the Gibbs sampler described in this example defines an (a) irreducible, (b) aperiodic, and,

(c) with respect to uniform distribution, reversible Markov chain (Xn)n≥0 on the space of

feasible configurations S.

Exercise 9.3 (A generalization of the disk-packing model). One can generalize Example

9.1.3 by introducing a parameter λ > 0 to the stationary distribution which will change the

weight given to different “packing sizes”. More precisely, one defines the target probability

distribution πλ on S by

πλ(x) =
λN(x)

Zλ
for x ∈ S

where N(x) is the number of occupied sites of configuration x, and Zλ is the normalizing

constant

Zλ =
∑
x∈S

λN(x)

for the distribution. Note that the case λ = 1 reduces to the standard disk-packing model.

(a) Describe the transition probabilities for the Gibbs sampler algorithm for this model.

(b) Verify that πλ is the stationary distribution.

Exercise 9.4 (A 1-dimensional disk-packing model). Consider a chain graph of n vertices

and let Sn be the set of feasible configurations for disk packing as described in Example

9.1.3. For an example of a feasible configuration for a chain graph of 12 vertices see Figure

9.7.
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Figure 9.7

We would like to draw samples from the uniform distribution on Sn. Construct the

transition probabilities for a Markov chain on Sn that converges to Unif(Sn). How would

you then use this Markov chain to estimate the average number mn of occupied sites?

Exercise 9.5. Consider the disk-packing model for a chain graph of m vertices as in

Exercise 9.4. Fix n > 0 even.

(a) Let nj,m be the number of feasible configurations with exactly j occupied sites. Show

that

nj,m =

(
n+ 1− j

j

)
for j = 0, 1, ...,

n

2
.

(b) Recall the Fibonacci sequence 1, 1, 2, 3, 5, 8, 13, .... It is described by the recurrence

fn = fn−1 + fn−2

for n ≥ 3, with f1 = f2 = 1. Show that |Sn| = fn+2, and as a consequence, we have

fn+2 =

n/2∑
j=0

(
n+ 1− j

j

)
.

Exercise 9.6. Recall Example 9.1.4. Show that the Gibbs sampler for proper k-colorings

defines a Markov chain that is (a) aperiodic, and (b) reversible with respect to uniform

distribution on S.

Exercise 9.7 (Sampling from a power law distribution). Fix s > 1. Let S = N and

consider the distribution π defined by

π(n) ∝ 1

ns
for n ≥ 1 .

(a ) Using the Metropolis algorithm, construct a Markov chain (Xn)n≥0 whose limiting

distribution is π. As a proposal chain, use simple symmetric random walk on N
with reflecting boundary at 1. Describe how the algorithm proceeds. (Note that we

do not need to know the normalizing constant c =
(∑∞

n=1
1
ns

)−1
.)

(b) For s = 2, explicitly state the transition probabilities for (Xn)n≥0 resulting from the

algorithm in part (a).
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Exercise 9.8 (The knapsack problem). Recall Example 9.2.1. We have n items labeled

1, 2, ..., n. Each item i, for 1 ≤ i ≤ n, has a weight wi and a value vi attached to it.

Suppose we would like to put a selection of these items into a knapsack that allows a

total upper weight limit of W . The goal is to find an optimal selection of items, that is,

a selection that maximizes the total value of the items in the knapsack. We represent a

selection of items as a binary vector z = (z1, z2, . . . , zn), where zj = 1 if Item j is part of

the selection, and zero otherwise. The constraint is then expressed as

n∑
j=1

zjwj ≤ W.

Let S be the set of binary vectors z that satisfy the above inequality.

(a) Consider the following Markov chain. Start at (0, 0, . . . , 0). At each step, choose an

index j uniformly at random from {1, 2, . . . , n}, replace zj with 1−zj in the current

selection vector z = (z1, z2, . . . , zn), and call the resulting vector y. If y is not in S,

remain at z. If y is in S, move to y. Show that the uniform distribution on S is

stationary for this chain.

(b) Show that the chain from part (a) is irreducible.

(c) The chain from part (a) is a useful way to draw samples from an approximately

uniform distribution on S. However, we are interested in optimizing (maximizing)

the total value of our selection of items. We therefore construct a Markov chain

with a stationary distribution π that puts much higher probability on any high-

value solution than on any low-value solution. Specifically, we want to simulate

from the distribution

π(x) ∝ eλf(z)

where f(z) =
∑n

j=1 vjzj and λ is some positive constant. Using the Metropolis-

Hastings algorithm, create a Markov chain whose stationary distribution is π.



Chapter 10

Random Walks on Groups

10.1 Basic notions

10.1.1 Generators, convolution powers

For many naturally occurring Markov chains, the state space S has the additional struc-

ture of that of a group, and the Markov chain is random walk on that group. Examples

that we have already encountered include random walk on Z with group operation + and

random walk on the discrete N -cycle {0, 1, ..., N − 1} with group operation + (mod N).

In both examples, the Markov chain proceeds from state x to a new state by choosing an

element y from S, independently of x and according to a given step distribution µ on S,

and then by composing (adding) x+ y, which is the resulting new state. For example, for

simple symmetric random walk on Z, at each time n, the Markov chain chooses its next

step uniformly at random (and independently from all other steps) from {−1, 1}. This

process of successively adding (or whatever the group operation is) i.i.d. steps can be

generalized to any group. Section 10.2 introduces the larger class of examples of random

walks on the symmetric group Sn, i.e. the group of permutations of n distinguishable

objects. We start with some basic definitions:

284
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Definition 10.1.1. A discrete group (G, ◦) is a finite or countably infinite set G

together with a group operation ◦ : G×G→ G that has the following properties:

(a) The operation ◦ is associative.

(b) There exists an identity element id ∈ G such that x ◦ id = id ◦ x = x for all

x ∈ G.

(c) For all x ∈ G there exists an inverse x−1 ∈ G such that x−1◦x = x◦x−1 = id.

If, in addition,

(d) x ◦ y = y ◦ x for all x, y ∈ G,

then G is called a commutative or abelian group.

Definition 10.1.2. Let G be a discrete group and U ⊂ G. We say

(a) We say U generates G, or U is a set of generators for G, if every g ∈ G
can be written as a finite product of elements in U .

(b) If U generates G and we have u ∈ U ⇐⇒ u−1 ∈ U , the set U is called a

symmetric set of generators for G.

Note that the set of generators U may be a finite set or an infinite set. In the following,

we will suppress writing ◦. Instead of writing x ◦ y, we will simply write xy. Let G be a

discrete group. Any probability distribution µ on G defines a random walk on G:

Definition 10.1.3. Let G be a discrete group and µ a probability distribution on

G. A right random walk (Xn)n≥0 on G with step distribution µ is a Markov

chain on G whose transition probabilities are

Pxy = µ(x−1y) for all x, y ∈ G .

Similarly, we define a left random walk with step distribution µ to be the Markov

chain whose transition probabilities are Pxy = µ(yx−1) for all x, y ∈ G.

Recall the notion of support, denoted by supp(µ), of a distribution µ on G:

supp(µ) = {g ∈ G : µ(g) > 0} .

Example 10.1.1. In Example 1.5.6 we have introduced simple random walk on the k-

dimensional hypercube. Here the state space is Zk2 = {0, 1}k. It is a finite Abelian group
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whose group operation is component-wise addition modulo 2. The step distribution µ in

this example is given by

µ(1, 0, ..., 0) = µ(0, 1, ..., 0) = · · · = µ(0, ..., 0, 1) =
1

k
.

Note that supp(µ) is a symmetric set of generators for the group Zk2. �

Proposition 10.1.1. Let G be a discrete group and µ a probability distribution on

G. Both left and right random walks on G with step distribution µ are irreducible

if and only if supp(µ) generates G.

Proof. We show this for right random walk. The proof for left random walk is analogous.

Set U = supp(µ). First, assume U generates G, and let x, y ∈ G. Then there exist k and

u1, ..., uk ∈ U such that x−1y = u1u2 · · ·uk. Hence

P k
xy ≥ Px,xu1Pxu1,xu1u2 · · ·Pxu1···uk−1,y = µ(u1)µ(u2) · · ·µ(uk) > 0 ,

which shows that the random walk is irreducible. Conversely, let us assume that the

random walk is irreducible. Let x ∈ G. Then there exists m such that Pm
id,x > 0. It

follows that there exist u1, ..., um−1 ∈ U such that

Pid,u1Pu1,u1u2 · · ·Pu1···um−1,x > 0 ,

and, consequently, there must also exist um such that x = u1 · · ·um−1um. This shows that

U generates G.

Let (Xn)n≥0 be (right) random walk on the discrete group G with step distribution µ.

Assume the random walk starts at the identity id of G. Thus X0 = id and X1 ∼ µ.

The distribution of X2 (after the walk has taken 2 steps) is the convolution µ ? µ. It is

defined by

µ ? µ(x) =
∑
y∈G

µ(y)µ(y−1x) for all x ∈ G .

We write µ?2 = µ ? µ. It is straightforward to show that µ?2 is again a probability

distribution. From this, we get the distribution of X3 (after the walk has taken 3 steps).

It is µ?3 = µ?2 ? µ defined by

µ?3(x) =
∑
y∈G

µ?2(y)µ(y−1x) for all x ∈ G .

By induction, Xn ∼ µ?n where

µ?n(x) =
∑
y∈G

µ?(n−1)(y)µ(y−1x) for all x ∈ G .
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Thus the n-step transition probabilities for a random walk on a group G are given by the

n-fold convolution powers of µ:

P n
xy = µ?n(x−1y) for all x, y ∈ G .

As a consequence, the n-step transition matrices Pn for random walk on a finite group

are doubly stochastic:

Definition 10.1.4. A stochastic matrix P is called doubly stochastic if each

column sums to 1.

Indeed, for any random walk on a finite group G with step distribution µ, the yth column

of P sums to ∑
x∈G

Pxy =
∑
x∈G

µ(x−1y) =
∑
g∈G

µ(g) = 1 .

The second equality follows from the fact that for any y ∈ G, the map f(x) = x−1y is a

one-to-one function on G. Hence P (in fact Pn for all n ≥ 1; to see this simply replace

Pxy with P n
xy and µ with µ?n in the above equations) is doubly stochastic.

For the following, recall the notion of an invariant measure (which is not necessarily a

probability measure) from Definition 2.2.2.

Proposition 10.1.2. Let G be a discrete group and µ a step distribution for (right)

random walk on G. Then for any c > 0, the constant measure π ≡ c on G is an

invariant measure for the random walk.

Proof. For any y ∈ G,∑
x∈G

π(x)Pxy = c
∑
x∈G

µ(x−1y) = c
∑
g∈G

µ(g) = c = π(y) .

Corollary 10.1.3. Let G be a discrete group and µ be a step distribution whose

support supp(µ) generates G. Then the following holds for the associated random

walk:

(a) If G is finite, then the uniform distribution µ ≡ 1
|G| is the unique stationary

distribution.

(b) If G is infinite, then the random walk is either null recurrent or transient.

There is no stationary distribution.
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Proof. By Proposition 10.1.1, the random walk is irreducible. If G is finite, then the walk

is positive recurrent and has a unique stationary distribution π. By Proposition 10.1.2,

π is constant on G, hence π is uniform distribution on G. If G is infinite and the walk is

recurrent, by Theorem 2.2.6, the constant measures on G are the only invariant measures

for the random walk. However, since G is infinite, a constant measure on G cannot be

normalized to a probability measure on G. Hence the random walk must be null recurrent.

If the random walk is transient, then no stationary distribution exists either.

It follows that for finite G, if the random walk on G with step-distribution µ is irreducible

and aperiodic, then

lim
n→∞

µ?n(x) =
1

|G|
for all x ∈ G .

Note that µ(id) > 0 is a sufficient (but not necessary) condition for aperiodicity of the

associated random walk.

If a random walk (Xn)n≥0 is periodic (and hence µ(id) = 0), we often work with a so-

called lazy version (X̃n)n≥0 of the random walk instead. We construct a lazy version

by introducing positive holding probability in the following way: Consider a sequence

(Zn)n≥1 of i.i.d. Bernoulli trials (coin tosses) that are also independent of (Xn)n≥0. Fix a

positive holding probability p with p < 1 and let P(Z1 = 1) = p = 1 − P(Z1 = 0). The

lazy version (X̃n)n≥0 is defined by X̃0 = X0 and

X̃n = XSn with Sn =
n∑
k=1

Zk

for n ≥ 1. Roughly speaking, at each step, a coin toss decides whether the random

walk stays in place or progresses (according to the original transition probabilities). The

resulting step distribution µ̃ for the lazy walk is

µ̃ = pµ+ (1− p)δid

where δid denotes unit mass at the identity id.

10.1.2 Time reversal of a random walk

For some examples of random walks on groups, it turns out to be easier to analyze their

time reversal (see Section 7.1), rather than the original random walk. Since for random

walk on a discrete group G the constant measures are the only invariant measures, the

time reversed random walk has step distribution µ̃ defined by

µ̃(g) = µ(g−1) for g ∈ G .
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We have shown in Section 7.1 that if a Markov chain is irreducible, so is its time reversal.

The following lemma restates this fact for the special case of random walks on groups.

Lemma 10.1.4. Let G be a discrete group and U ⊂ G a set of generators. The the

set Ũ defined by

u−1 ∈ Ũ ⇐⇒ u ∈ U

is a set of generators for G.

Proof. Let g ∈ G. Since U generates G, there exist u1, ..., um ∈ U such that g−1 =

u1 · · ·um. So

g = u−1
m · · ·u−1

1 ,

and since u−1
1 , ..., u−1

m ∈ Ũ , the set Ũ generates G.

In Section 10.2 we will introduce examples of random walks on the permutation group Sn.

We will be interested in studying their rates of convergence to stationarity (to uniform

measure). For such a study, we first need to decide on a specific notion of distance

between two probability measures ν, π on G. One commonly used notion of distance is

the L1-distance defined by

‖ν − π‖L1 =
∑
g∈G

|ν(g)− π(g)| ,

or rather ‖ν − π‖TV := 1
2
‖ν − π‖L1 , which is called total variation distance and which

has a nice probabilistic interpretation (see Section 11.1). The following lemma explains

why we can work with the time reversed random walk when studying rates of convergence

with respect to L1- (or total variation) distance.

Lemma 10.1.5. Let G be a finite group, µ a step distribution on G whose support

generates G, and π uniform distribution on G. Let µ̃ be the step distribution of the

time reversed walk. Then

‖µ∗n − π‖L1 = ‖µ̃∗n − π‖L1 for n ≥ 1 .

Proof. We assume that the random walk is right random walk and starts at id. Let n ≥ 1.

The random walk proceeds by successively and independently choosing x1, x2, ... from G

according to µ and right multiplying each new chosen element with the current product.

Thus

P(Xn = x) = µ∗n(x) =
∑

x1,...,xn:
x1···xn=x

µ(x1) · · ·µ(xn)
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which is equal to∑
x1,...,xn:
x1···xn=x

µ̃(x−1
1 ) · · · µ̃(x−1

n ) =
∑

x1,...,xn:

x−1
n ···x

−1
1 =x−1

µ̃(x−1
n ) · · · µ̃(x−1

1 ) = µ̃∗n(x−1) = P(X̃n = x−1) .

We get

‖µ∗n − π‖L1 =
∑
x∈G

∣∣∣∣µ∗n(x)− 1

|G|

∣∣∣∣ =
∑
x∈G

∣∣∣∣µ̃∗n(x−1)− 1

|G|

∣∣∣∣ = ‖µ̃∗n − π‖L1 .

Note: In general it is not true that, for a given time n, the distance to stationarity for a

Markov chain and the distance to stationarity for its time reversal are equal.

Definition 10.1.5. Let G be a discrete group and µ a probability distribution on

G. We say µ is a symmetric probability distribution if

µ(x) = µ(x−1) for all x ∈ G .

Lemma 10.1.6. An irreducible random walk on a finite group G is reversible if

and only if its step distribution µ is symmetric.

Proof. For any random walk on a finite group G, uniform distribution on G is a stationary

distribution. The statement follows from the fact that Pxy = µ(x−1y).

It follows that for a reversible random walk on a finite group G, the corresponding one-step

transition matrix P is a symmetric matrix (and all eigenvalues of P are real).

Lastly, we point out that certain examples of Markov chains can be “lifted” to a random

walk on a group, so the original Markov chain can be viewed as a lumped version (recall

Section 1.7) of the random walk on the group. This viewpoint is often helpful towards

analyzing the Markov chain. We have already seen examples of lumping: The Ehrenfest

chain is a lumped version of simple random walk on the hypercube (see Example 1.7.4 and

Subsection 11.2.4). Random walk on the integers {0, 1, ..., N} with reflecting boundary

at 0 and N can be viewed as a lumped version of simple random walk on a discrete cycle

(see Example 1.7.5).
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10.2 Card shuffling

Shuffling a deck of n cards is a Markov chain Monte Carlo approach to producing a

(uniform or near uniform) random permutation of n cards. The Markov chain (Xn)n≥0

that models the process of shuffling is a random walk on the symmetric group Sn which

is the group of all permutations of n distinguishable objects. Recall that a permutation

σ ∈ Sn is a bijective map

σ : {1, ..., n} → {1, ..., n}

and thus can be identified with a particular order of the deck. The group operation on Sn

is composition of two such functions. Note that the symmetric group Sn is non-abelian

for n ≥ 3.

Although shuffling a deck of cards is an entertaining way to think about random walks

on the symmetric group Sn, it is by no means the only application. The study of “mixing

up n distinguishable objects” is relevant in many areas, for example in genetics or in

cryptography. Note that here the size of the state space grows super-exponentially in n,

which makes the state space prohibitively large for any direct enumeration of the states

in most applications. For example, for a standard deck of 52 cards, the state space Sn

consists of |Sn| = 52! > 8 · 1067 permutations.

How we shuffle a deck, that is, which shuffling mechanism is used, is determined by the

step distribution µ of the random walk. In theory, any distribution µ that is supported

on a set of generators of the group Sn could be considered. But in praxis, only a few

distributions µ translate into a convenient algorithm and have “fast enough” convergence

to uniformity (we discuss rates of convergence in Chapter 11). In the following we describe

two shuffling mechanisms that have been studied in great detail over the past decades (see

Exercise 10.8 for additional examples).

Top-to-random shuffle

Consider top-to-random card shuffling chain with n cards. Initially, the deck is in perfect

order. At each time, the top card is taken off and randomly inserted into the deck. See

Figure 10.1 for a possible shuffle. The state space consists of all possible orders of the

deck, i.e., all possible permutations of n distinguishable cards.

This process is modeled as a random walk on Sn. The step distribution µ is concentrated

and uniformly distributed on the set of cyclic permutations C = {σ1, σ2, ..., σn} of the

form

σk = (1→ 2→ 3→ · · · → k → 1) for k = 1, 2, ..., n . (10.1)
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2

n

1
2

n

1

Figure 10.1: Top-to-random shuffle

Here (1→ 2→ 3→ · · · → k → 1) in (10.1) stands for the cyclic permutation σk defined

by

σk(i) = i+ 1 for 1 ≤ i ≤ k − 1 , σk(k) = 1 , σk(j) = j for k + 1 ≤ i ≤ n .

Note that σ1 = id. It is well known that the set C is a set of generators for the symmetric

group Sn. Top-to-random shuffling proceeds as follows. At first, the deck of n cards is

in perfect order (i.e. the chain starts at id). Perfect order means the cards are stacked

according to descending label, so the card labelled 1 is the top card, and the card labelled

n is the bottom card. For each shuffle, a cyclic permutation σi ∈ C is chosen according

to the step distribution

µ(σi) =
1

n
for 1 ≤ i ≤ n .

For the actual shuffle, this means that the top card is taken off and inserted into the deck

at a uniformly randomly chosen location. This corresponds to multiplying (composing)

the current permutation (which describes the current order of the deck) on the right by

the chosen σi. Figure 10.2 shows an example (for n = 5) of a sample path (X0, X1, X2, X3)

of three shuffles.

position X0
σ3−→ X1

σ4−→ X2
σ2−→ X3

1 1 −→ 2 −→ 3 −→ 1

2 2 −→ 3 −→ 1 −→ 3

3 3 −→ 1 −→ 4 −→ 4

4 4 −→ 4 −→ 2 −→ 2

5 5 −→ 5 −→ 5 −→ 5

Figure 10.2: Sample path for three top-to-random shuffles

The last column gives the deck after three shuffles, where for the first shuffle the top card

was inserted below the third card, for the second shuffle the top card was inserted below

the fourth card, and for the third shuffle the top card was inserted below the second card.
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This results, at time 3, in the permutation σ3 ◦ σ4 ◦ σ2 which is given in the last row of

Figure 10.3.

i : 1 2 3 4 5

σ3(i) : 2 3 1 4 5

σ3(σ4(i)) : 3 1 4 2 5

σ3(σ4(σ2(i))) : 1 3 4 2 5

Figure 10.3: Resulting permutation of the deck after each shuffle

Note that when we write σ(i) = k for a permutation σ, it means “Card k is in position

i”. Thus the top-to-random shuffle with step distribution concentrated on C constitutes

a right random walk on Sn.

The time reversal of top-to-random shuffle is random-to-top shuffle. Its step distri-

bution µ̃ is uniform measure on the set C̃ = {id, σ−1
2 , ..., σ−1

n } where

σ−1
k = (k → (k − 1)→ (k − 2)→ · · · → 1→ k) for 2 ≤ k ≤ n .

A shuffle is performed by choosing a card uniformly at random, taking it out of the deck,

and putting it on top of the pile. A possible random-to-top shuffle is shown in Figure 10.4.

This random walk is also called the move-to-front chain or Tsetlin library (think of a

librarian returning each randomly selected and used book back to the front of the shelf).

2

n

1
2

n

k

1

Figure 10.4: Random-to-top shuffle

Riffle shuffle

Riffle shuffling is a more realistic way of shuffling cards than, say, top-to-random shuffling.

The model was proposed by Gilbert and Shannon (1955) and later, independently, by

Reeds (1981). It has been closely studied ([1], [5]) and become famous for the result “7

shuffles mix a deck of cards” in [5].

The shuffling mechanism is as follows. Start with a perfectly ordered deck of n cards. At

each step, cut the deck in half according to a binomial distribution Bin(n, 1
2
). This gives
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2 stacks, one of size m and one of size n −m, which happens with probability
(
n
n

)
1/2n.

Then “riffle” (interlace) the two stacks, but keep the relative order of the cards in each

stack. There are
(
n
m

)
ways to riffle the two stacks together. Assume each of these

(
n
m

)
arrangements is equally likely to occur. Figure 10.5 shows a possible riffle shuffle with

m = 3. It occurs with probability 1/2n.

2

n

1

4

n

1
2

3

Figure 10.5: Riffle shuffle

We now define the concept of a rising sequence in a permutation: A rising sequence

is a maximal consecutively increasing subsequence of the permutation. For example, the

shuffle in the above picture results in a permutation with 2 rising sequences (viewed

from top down): (1, 2, 3) and (4, 5, ..., n). For every permutation σ, the set {1, 2, ..., n}
decomposes into a disjoint union of rising sequences. A single riffle shuffle results in a

permutation that has exactly two rising sequences or is the identity id (which has exactly

one rising sequence). Two riffle shuffles performed in a row result in a permutation that

has at most 4 rising sequences. With each shuffle, the number of rising sequences can at

most double.

The step distribution µ for a riffle shuffle is given by

µ(σ) =


1/2n if σ has exactly two rising sequences

(n+ 1)/2n if σ = id

0 otherwise .

Note that a single shuffle results in id if either m = 0 or m = n, or m = j for 1 ≤ j ≤ n−1

and the “riffling” puts the two stacks back on top of each other, resulting in the original

order of the deck. Hence µ(id) = (n+ 1)/2n.

After k shuffles, the order of the deck has distribution µ∗k (the k-fold convolution of µ)

on the permutation group Sn. In [5], Bayer and Diaconis compute the exact formula for

µ∗k(σ): Let R(σ) denote the number of rising sequences of permutation σ. Then

µ∗k(σ) =
1

2nk

(
2k + n−R(σ)

n

)
.

The time reversal for the riffle shuffle proceeds as follows. At each step, we mark each

card with either 0 or 1, according to i.i.d. Bernoulli random variables. We then sort the
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cards according to this marking by bringing all cards marked with 0 to the top of the pile,

leaving their relative order at the time of the marking intact. We will refer to one such

step in the process as an inverse riffle shuffle. See Figure 10.6 for an illustration.

starting deck mark cards

1 1

2 0

3 1

4 0

5 0

deck after 1 inv. riffle sorted bits

2 0

4 0

5 0

1 1

3 1

Figure 10.6: Inverse riffle shuffle

For inverse riffle shuffling, the analogous notion to rising sequences for riffle shuffles is the

notion of descents of a permutation. We say a permutation σ has a descent at k for

1 ≤ k ≤ n− 1 if

σ(k) > σ(k + 1) .

Note that in the the example in Figure 10.6, the resulting permutation has a descent at

k = 3. An inverse riffle shuffle results in a permutation that has exactly one descent or is

the identity id (which has zero descents). The step distribution µ̃ for the inverse shuffle

is given by

µ̃(σ) =


1/2n if σ has exactly one descent

(n+ 1)/2n if σ = id

0 otherwise .

We will study top-to-random shuffling and riffle shuffling in more detail in Chapter 11.

10.3 Random walks on finite abelian groups

In order to study the long-term behavior of finite state Markov chains with transition ma-

trix P, we need to understand the matrix powers Pn which in turn requires understanding

the eigenvalues of P (see Section 11.2). For random walks on finite abelian (commutative)

groups, the eigenvalues and eigenvectors of the transition matrix P are often fairly easy

to compute. We have already encountered examples of finite abelian groups: the discrete

circle Zn (i.e., the cyclic group of order n) with addition modulo n, and the hypercube

Zk2 (i.e., the direct product of k copies of Z2) with component-wise addition modulo 2. In

fact, any finite abelian group is of similar form:
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Definition 10.3.1. Consider two discrete groups (G, ◦) and (H, �) and a function

f : G→ H. We say f is a group homomorphism from G to H if

f(x ◦ y) = f(x) � f(y) for all x, y ∈ G . (10.2)

If a function f : G→ H with property (10.2) is also one-to-one, it is called a group

isomorphism from G to H, and the groups G and H are called isomorphic.

Isomorphic groups have the same group structure and therefore can be identified as groups.

Theorem 10.3.1 (Fundamental Theorem of Finite Abelian Groups). Any finite,

abelian group G is isomorphic to a direct product of cyclic groups whose order is a

power of a prime number, that is,

G ' Zn1 × · · · × Znk (10.3)

where nj = p
kj
j with pj prime (not necessarily distinct), kj ∈ N, for all j = 1, ..., k .

Under this identification, the group operation on G is component-wise addition modulo

nj in each slot. The order (cardinality) of G is |G| = n1n2 · · ·nk. Note that the symmetric

group Sn, i.e., the group of all permutations of n distinguishable objects, which we have

encountered in modeling card shuffling, is not abelian.

10.3.1 Characters and eigenvalues

Since any finite abelian group can be identified with a group of the form (10.3), we will

write the group operation on G as +. We start with the definition of a group character.

Definition 10.3.2. Let (G,+) be a finite abelian group. Consider the multiplicative

group (U, ·) of complex numbers of modulus 1. A character χ of G is a group

homomorphism χ : G→ U. That is,

χ(x+ y) = χ(x) · χ(y) for all x, y ∈ G . (10.4)

Consider a finite abelian group (G,+) of order |G| = n. Let id be its identity element

and χ a character of G. It follows from property (10.4) that χ(id) = 1 and χ(−x) = χ(x)

for all x ∈ G. Furthermore, any function value χ(x) for x ∈ G must be an nth root of

unity. Indeed, it is know that for any x ∈ G, we have x + x · · · + x = id (n summands;

see Exercise 10.3). And so by property (10.4), (χ(x))n = 1. In particular, the constant
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function 1 is a character. We call it the trivial character χtriv ≡ 1. In the following, i will

always denote the complex number
√
−1.

Proposition 10.3.2. Let G = Zn1 × · · · × Znk . For any m = (m1, ...,mk) with

mj ∈ Znj (for j = 1, ..., k), the function χm on G defined by

χm(x) = exp [2πi((x1m1/n1) + · · ·+ (xkmk/nk))] for x = (x1, ..., xk) ∈ G

is a character of G.

There are n = n1n2 · · ·nk = |G| distinct k-tuples m of the kind described in Proposition

10.3.2. Each such k-tuple defines a character for G, and two distinct m1, m2 define distinct

characters for G. We will show in Proposition 10.3.3 that, in fact, these characters account

for all characters for G.

For a given abelian group G, denote its set of characters by Ĝ. The set Ĝ forms an abelian

group with respect to pointwise multiplication:

(a) If χ1, χ2 ∈ Ĝ, then χ1χ2 ∈ Ĝ and χ1χ2 = χ2χ1.

(b) The trivial character is χtriv ≡ 1 the identity element for pointwise multiplication.

(c) If χ ∈ Ĝ, then χ̄ (the complex conjugate of χ) is also a character and χχ̄ = 1. We

have χ̄(x) = χ(−x).

Verification of properties (a)-(c) is straightforward. Moreover, the groups G and Ĝ are

isomorphic under the bijection f : G→ Ĝ with f(m) = χm.

Proposition 10.3.3. Let G = Zn1 × · · · × Znl. Consider the vector space VG of

complex valued functions f : G→ C, and on this vector space VG the inner product

〈·, ·〉G defined by 〈f, g〉G = 1
|G|
∑

x∈G f(x)ḡ(x) for f, g ∈ VG. We then have the

following:

(a) For any non-trivial character χ we have
∑

x∈G χ(x) = 0.

(b) The set of characters Ĝ forms an orthonormal system with respect to 〈·, ·〉G.

(c) Ĝ forms a basis for the vector space VG.

Proof. (a) Let χ 6= χtriv and take x0 ∈ G. Then∑
x∈G

χ(x) =
∑
x∈G

χ(x+ x0) = χ(x0)
∑
x∈G

χ(x) . (10.5)
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Since χ is non-trivial, we can find x0 ∈ G such that χ(x0) 6= 1. Therefore it follows from

(10.5) that ∑
x∈G

χ(x) = 0 .

(b) Let n = |G|. By part (a),

〈χtriv, χ〉G =
1

n

∑
x∈G

χ(x) = 0 .

We also have 〈χtriv, χtriv〉G = 1
n

∑
x∈G 1 = 1. For χ1 and χ2 non-trivial characters, we

have

〈χ1, χ2〉G =
1

n

∑
x∈G

χ1(x)χ̄2(x) =
1

n

∑
x∈G

χ(x) = 0 ,

where we have taken χ = χ1χ2 (which is also a character since Ĝ is a group). Lastly, for

any non-trivial character χ we have

〈χ, χ〉G =
1

n

∑
x∈G

χ(x)χ̄(x) =
1

n

∑
x∈G

χ(x)χ(−x) =
1

n

∑
x∈G

χ(id) = 1 .

(c) Since, by part (b), the set of characters forms and orthonormal system in VG, the

characters are linearly independent. The vector space VG has dimension n = |G|. By

Proposition 10.3.2, any finite abelian group has n = |G| distinct characters. Hence the

characters as described in Proposition 10.3.2 are all characters for G, and they form an

orthonormal basis of VG.

Consider a random walk on a finite abelian group G with transition matrix P. We next

show that the characters of G are eigenvectors of P. This fact will allow us to compute

the eigenvalues of P.

Proposition 10.3.4. Let G be a finite abelian group and µ a probability distribution

on G. Consider random walk on G with step distribution µ. Let χ be a character

of G. Then χ is a right eigenvector for the transition matrix P with corresponding

eigenvalue λ = Eµ(χ) =
∑

z∈G µ(z)χ(z).

Proof. We have

(Pχ)(y) =
∑
x∈G

Pyxχ(x) =
∑
x∈G

µ(x− y)χ(x)

=
∑
z∈G

µ(z)χ(z + y) = χ(y)
∑
z∈G

µ(z)χ(z) = λχ(y) .
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Proposition 10.3.4 gives an easy way for computing all eigenvalues of P. Note that if

µ is uniform distribution on G, the corresponding transition matrix P has eigenvalue 1

(with multiplicity 1), and the rest of the eigenvalues are 0. We can of course see this

directly, since P is the matrix all of whose entries are equal to 1
|G| . But it also follows

from Proposition 10.3.3(a) and Proposition 10.3.4.

Definition 10.3.3. Let G be a finite abelian group and µ a probability distribution

on G. We call the map µ̂ : Ĝ→ C defined by

µ̂(χ) = Eµ(χ) =
∑
z∈G

µ(z)χ(z)

the Fourier transform of the probability distribution µ.

Thus the image Im(µ̂) of the Fourier transform µ̂ is the set of eigenvalues of the transition

matrix P for a random walk with step distribution µ. Since Pk is the transition matrix

for a random walk with step distribution µ∗k, we get the following immediate relationship

between the Fourier transform of µ and the Fourier transform of its kth convolution power

µ∗k:

Proposition 10.3.5. Let µ be a probability distribution on a finite abelian group

G and µ∗k its kth convolution power. Then

µ̂∗k(χ) = Eµ∗k(χ) = (Eµ(χ))k

for all χ ∈ Ĝ.

In the following, we compute the eigenvalues for two of our running examples of random

walks on abelian groups, namely simple random walk on Zn and simple random walk on

the hypercube Zk2.

Example 10.3.1. Let G be the discrete circle Zn, i.e., the numbers {0, 1, ..., n − 1}
together with the group operation + (mod n). We consider simple, symmetric random

walk on Zn. The characters of Zn can be labeled by k for 0 ≤ k ≤ n− 1 and are defined

by

χk(x) = e2πixk/n for x ∈ Zn .

Since the step distribution µ is uniform on {1,−1}, the corresponding eigenvalues are

λk = Eµ(χk) =
1

2
e2πik/n +

1

2
e−2πik/n = cos(2πk/n)
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for k = 0, 1, ..., n − 1. All eigenvalues are real, hence for each k, the real part Re(χk) of

the eigenvector χk is also an eigenvector corresponding to λk. That is, for each k, the

function fk(x) = cos(2πkx/n) for x ∈ Zn is a right eigenvector of the transition matrix P

corresponding to eigenvalue λk = cos(2πk/n).

If instead we consider lazy simple random walk with µ̃(0) = 1
2

and µ̃(1) = µ̃(−1) = 1
4
, the

eigenvectors remain the same, and we get the corresponding eigenvalues

λ̃k =
1

2
+

1

4
e2πik/n +

1

4
e−2πik/n =

1

2
+

1

2
cos(2πk/n)

for k = 0, 1, ..., n − 1. Again, all eigenvalues of P are real since the random walk is

reversible (has symmetric step distribution). �

Example 10.3.2. Consider G = Zk2, the hypercube of dimension k. Note that |Zk2| = 2k.

For simple random walk with holding probability 1
2
, the step distribution µ is defined by

µ(0, ..., 0) = 1
2

and

µ(1, 0, ..., 0) = µ(0, 1, 0, ..., 0) = · · · = µ(0, ..., 0, 1) =
1

2k
.

Here the characters can be labeled by the binary k-tuples k = (m1, ...,mk) with mj ∈
{0, 1}. So the character labeled by k is defined by

χk(x) = e2πi(x1m1+···+xkmk)/2 for x = (x1, ..., xk) ∈ Zk2 .

For any non-trivial character χk, we can identify the label k with a subset J ⊆ {1, 2, ..., k}
(that is, the set J of indices j for which mj = 1). Thus, equivalently, we can write for the

character

χJ(x) =
∏
j∈J

(−1)xj for x = (x1, ..., xk) ∈ Zk2 .

The corresponding eigenvalues are

λJ =
1

2
+

1

2k
((k − |J |)− |J |) =

k − |J |
k

.

Since there are
(
k
|J |

)
distinct subsets of size |J | of {1, ..., k}, the multiplicity of eigenvalue

k−|J |
k

is
(
k
|J |

)
. To summarize, the eigenvalues of lazy random walk on the hypercube Zk2

are
k − j
k

with multiplicity

(
k

j

)
for j = 0, 1, ..., k .

Here again, all eigenvalues are real since the random walk is reversible. �
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Exercises

Exercise 10.1. Consider two probability measures µ and ν on a discrete group G. Show

that the convolution product µ ? ν is also a probability measure.

Exercise 10.2. Show that the transition matrix P of a finite-state Markov chain is doubly

stochastic if and only if uniform measure is a stationary distribution for the chain. If P

is doubly stochastic, does it follow that each n-step transition matrix Pn is also doubly

stochastic?

Exercise 10.3. Consider a finite abelian group (G,+) with |G| = n. Show that for all

x ∈ G,

x+ x+ · · ·+ x = id (n summands) .

(Hint: Consider a function f : G→ G defined by f(gj) = x+ gj .)

Exercise 10.4. Let (Xn)n≥0 be random walk on a discrete group G with step distribution

µ for which µ(id) = 0. Consider a lazy version (X̃n)n≥0 of this random walk where, at each

step, an independent and biased coin toss determines whether or not the process holds

in its current state or moves to a next state, according to the transition probabilities

for (Xn)n≥0. We assume the coin tosses form an i.i.d. sequence of Bernoulli(p) random

variables. Find a formula for the n-step transition probabilities for (X̃n)n≥0 in terms of

the k-step convolution powers of µ.

Exercise 10.5. The following is a generalization of a certain “translation invariance”

feature that random walks on groups possess: Let (Xn)n≥0 be a Markov chain on state

space S with transition matrix P. We say the Markov chain is transitive if for any two

states r, s ∈ S there exists a bijection f = f(r,s) : S → S with f(r) = s that preserves the

transition probabilities, that is, for which Pu,v = Pf(u),f(v) for all u, v ∈ S. Intuitively, if

a Markov chain is transitive, then, for any two states in the state space, there is always

a suitable re-labeling of the states, so that the chain “looks probabilistically the same” if

we use either one of the two states as the starting state for the chain.

(a) Show that a random walk on a group is a transitive Markov chain.

(b) Show that for any transitive Markov chain with finite state space S, the uniform

distribution on S is a stationary distribution.

Exercise 10.6. Consider a transitive Markov chain (Xn)n≥0 on a finite state space S
and let π be the stationary distribution. Assume the chain starts in state x0 ∈ S. Let

Xn ∼ µn for n ≥ 0. Show that the L1-distance to stationarity ‖µn−π‖L1 does not depend

on the starting state x0.
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Exercise 10.7. Consider a probability measure µ on a discrete group G. Show that if

supp(µ) is a symmetric set of generators for G, then the associated random walk on G is

either aperiodic or has period 2. Give an example of µ and G for which µ(id) = 0 and for

which the random walk is aperiodic.

Exercise 10.8. For each of the following shuffling mechanisms of a deck of n cards, i.e.

random walks on Sn, describe the probability measure µ on Sn that is the step distribution

for the random walk.

(a) Random transpositions. At each time step, choose uniformly at random two cards

(with replacement) from the deck. Then interchange the location of the two chosen

cards in the deck.

(b) Random-to-random insertions. At each time step, choose uniformly at random a

card from the deck, remove it from the deck, and reinsert it into the deck in a

uniformly at random chosen location.

Exercise 10.9. Consider a card shuffling process of n cards, i.e. an irreducible random

walk (Xn)n≥0 on the symmetric group Sn for a given step distribution µ on Sn, as described

in Section 10.2. Recall that for σ ∈ Sn, for right random walk, σ(i) = k means “Card k

is in position i in the deck”. Now fix a k, and consider the function f : Sn → {1, ..., n}
defined by f(σ) = σ−1(k). The function f gives the position of Card k in the deck.

(a) Show that (Xn)n≥0 is lumpable with respect of f , that is, the process (f(Xn))n≥0 is

a Markov chain on state space {1, ..., n}.

(b) Show that uniform distribution on {1, ..., n} is stationary for the lumped Markov

chain from part (a).

Exercise 10.10. Consider top-to-random shuffling for n = 5 cards. Explicitly give the

transition matrix for the Markov chain from Exercise 10.9(a) which tracks the location of

Card 1 in the deck.

Exercise 10.11. Consider a finite abelian group G and a probability measure µ on G.

Let π ∼ Unif(G) be uniform probability measure on G. Prove that if there exists k0 ≥ 1

such that µ?k0 ∼ π, then µ ∼ π.

Exercise 10.12. Let (G, ◦) and (H, �) be two finite abelian groups. Their direct product

(G×H, ?) is also an abelian group with group operation ? being defined component-wise.

That is, for all (g1, h1), (g2, h2) ∈ G×H, we define

(g1, h1) ? (g2, h2) = (g1 ◦ g2, h1 � h2) .
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(a) Show that if χG is a character of G and χH is a character of H, then (χG, χH)

defined by

(χG, χH)(g, h) = χG(g)χH(h) for all g ∈ G, h ∈ H (10.6)

is a character of G×H.

(b) Recall that Ĝ denotes the set of characters of G. Show that (10.6) defines a bijection

between Ĝ× Ĥ and Ĝ×H.



Chapter 11

Rates of Convergence

11.1 Basic set-up

Quantitative results about the speed of convergence of a given Markov chain are of major

practical interest in applications of Markov chain Monte Carlo methods. For how long do

we need to run the Markov chain so that samples drawn are “sufficiently good approx-

imations” to samples from its stationary distribution π? Precise statements about the

related mixing time of the Markov chain will be based on an appropriate choice of dis-

tance between probability measures. The following is a commonly used notion of distance

between probability measures in this context:

Definition 11.1.1. Let S be a discrete set and π and µ two probability distributions

on S. The total variation distance between π and µ is defined by

‖µ− π‖TV = sup
E⊆S
|µ(E)− π(E)| . (11.1)

It gives the maximum error made when we use µ to approximate π.

The definition implies 0 ≤ ‖µ − π‖TV ≤ 1. The following proposition shows that total

variation distance is equal to one-half of the L1-distance of the two distributions. It is

sometimes easier to work with (11.2) rather than with the probabilistic definition (11.1)

of total variation distance.

Lemma 11.1.1. Let S be a discrete set and µ and π two probability distributions

on S. Then

‖µ− π‖TV =
1

2

∑
x∈S

|µ(x)− π(x)| . (11.2)

304
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Proof. Consider the set A = {x ∈ S : µ(x) ≥ π(x)}. See Figure ?? below. We have

sup
E⊆S

(µ(E)− π(E)) = µ(A)− π(A) .

We then consider the set Ac = {x ∈ S : µ(x) < π(x)} and reverse the roles of µ and π.

This yields

sup
E⊆S

(π(E)− µ(E)) = π(Ac)− µ(Ac) .

Note that µ(A)− π(A) = π(Ac)− µ(Ac). We get

‖µ− π‖TV = sup
E⊆S
|π(E)− µ(E)| = µ(A)− π(A)

=
1

2
(µ(A)− π(A) + π(Ac)− µ(Ac) =

1

2

∑
x∈S

|µ(x)− π(x)| .

µ

π

R1

R2

A Ac

Figure 11.1: The areas of regions R1 and R2 are the same.

In the above Figure ??, Area(R1) = µ(A) − π(A) and Area(R2) = π(Ac) − µ(Ac). The

two areas are equal. We have

‖µ− π‖TV = Area(R1) = Area(R2) .

Note that ‖µ − π‖TV = 0 if and only if µ(x) = π(x) for all x ∈ S, and furthermore

‖µ − π‖TV = 1 if and only if µ and π are supported on disjoint subsets of S. For a

sequence µn, n ≥ 0, of probability measures on S we have

lim
n→∞

‖µn − π‖TV = 0 ⇐⇒ lim
n→∞

µn(x) = π(x) ∀x ∈ S . (11.3)
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If S is finite, statement (11.3) is immediate. The proof of (11.3) for countably infinite S
is the content of Exercise 11.5.

Often times in applications, for a given Markov chain (Xn)n≥0 with Xn ∼ µn, quanti-

tative results about the rate of convergence of ‖µn − π‖TV to 0 are needed. In this

chapter we will discuss methods for studying such rates of convergence. We first show

that as the Markov chain progresses in time, its total variation distance to stationarity

can only decrease with time.

Lemma 11.1.2. Let (Xn)n≥0 be a Markov chain and π a stationary distribution

for the chain. Let Xn ∼ µn for n ≥ 0. Then

‖µn+1 − π‖TV ≤ ‖µn − π‖TV for all n ≥ 0 .

Proof. Using µn+1(x) =
∑

y∈S µn(y)Pyx, we have

‖µn+1 − π‖TV =
1

2

∑
x∈S

∣∣∣∣∣∑
y∈S

µn(y)Pyx −
∑
y∈S

π(y)Pyx

∣∣∣∣∣
=

1

2

∑
x∈S

∣∣∣∣∣∑
y∈S

(µn(y)− π(y))Pyx

∣∣∣∣∣
≤ 1

2

∑
x∈S

∑
y∈S

|µn(y)− π(y)|Pyx

=
1

2

∑
y∈S

|µn(y)− π(y)|
∑
x∈S

Pyx

=
1

2

∑
y∈S

|µn(y)− π(y)|

= ‖µn − π‖TV

where the rearrangement of the sum in line 4 is justified because of absolute convergence.

Example 11.1.1. Recall the 2-state chain on state space S = {0, 1} with transition

matrix

P =

(
1− a a

b 1− b

)
for fixed a, b ∈ (0, 1). Let us assume the chain starts in state 0. Thus µn = (P n

00, P
n
01).

Recall Example 1.3.2 where we have computed the n-step transition probabilities for this
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chain. We have

µn =

(
b

a+ b
+

a

a+ b
(1− a− b)n, a

a+ b
− a

a+ b
(1− a− b)n

)
.

The unique stationary (limiting) distribution is

π =

(
b

a+ b
,

a

a+ b

)
.

Thus we get the following explicit formula for total variation distance to stationarity as

a function of time n:

‖µn − π‖TV = 1
2

(|P n
00 − π(0)|+ |P n

01 − π(1)|)

=
a

a+ b
|1− a− b|n .

(11.4)

Since we assumed a, b ∈ (0, 1), we have |1 − a − b| < 1. Thus we see from (11.4) that

‖µn−π‖TV decays exponentially fast. Note that (1−a−b) is the second largest eigenvalue

of the transition matrix P. In the next section we will see that the eigenvalues of P, in

particular the (in modulus) second largest eigenvalue of P, play an important role in the

rate of convergence to stationarity. �

In studying rates of convergence for Markov chain, one of the obvious questions of interest

is: How many steps are needed (or suffice) for the particular chain to be “ε-close” to

stationarity? This question is about the mixing time of a Markov chain which we will

define next.

Definition 11.1.2. Consider an irreducible, positive recurrent, and aperiodic

Markov chain (Xn)n≥0 with stationary distribution π. Let Xn ∼ µn for n ≥ 0.

For a given ε > 0, we define the mixing time tmix
ε by

tmix
ε = min{n : ‖µn − π‖TV ≤ ε} .

Note that the notion of mixing time makes sense in light of the monotonicity property of

total variation distance (Lemma 11.1.2).

11.2 Spectral bounds

The distribution of a Markov chain at time n is µn = µ0P
n. Clearly, when studying

convergence rates of µn, we need to understand the convergence behavior of the matrix

powers Pn. For finite state space, this behavior will be determined by the eigenvalues
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1

time ntmix
ε

ε

‖µn − π‖TV

Figure 11.2: Mixing time

(the spectrum) of the finite transition matrix P. Recall that for the special case of

random walks on a finite abelian group, we have computed the spectrum of the transition

matrix in Section 10.3. The Perron–Frobenius theorem (see Appendix A.6) provides useful

information for the general case. The following proposition summarizes some important

properties of the eigenvalues of a stochastic matrix P.

Proposition 11.2.1. Let P be a stochastic (n×n)-matrix. We have the following:

(a) λ1 = 1 is an eigenvalue of P, and there exists a nonnegative left eigenvector v

corresponding to λ1 = 1. If λ is an eigenvalue (possibly a complex eigenvalue)

of P, then |λ| ≤ 1.

(b) If P is irreducible and aperiodic (in particular, if P is strictly positive), then

eigenvalue λ1 = 1 has algebraic and geometric multiplicity 1, and there exists

a strictly positive left eigenvector v corresponding to eigenvalue 1. For all

other eigenvalues λ 6= 1, we have |λ| < 1.

(c) If P is irreducible and periodic with period c > 1, then P has exactly c eigen-

values λ1, λ2, ..., λc of modulus 1. The λi are the cth roots of unity. Each λi

has algebraic and geometric multiplicity one.

Proof. (a) Consider the constant column n-vector wt = (1, 1, ..., 1)t. Since P is stochastic,

we have Pwt = wt. So 1 is a right and therefore also left eigenvalue of P. Let v =

(v1, ..., vn) be a left eigenvector corresponding to eigenvalue 1. We will show that |v| =

(|v1|, ..., |vn|) is also a left eigenvector corresponding to eigenvalue 1, so |v|P = |v|. Note

that by the triangle inequality,

|vj| ≤
n∑
i=1

|vi|Pij
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for all j = 1, ..., n. If |v|P 6= |v|, then there exists at least one index j0 such that

|vj0| <
∑n

i=1 |vi|Pij0 . Thus

n∑
j=1

|vj| <
n∑
j=1

n∑
i=1

|vi|Pij =
n∑
i=1

|vi|

which is a contradiction. It follows that the nonnegative vector |v| is in fact a left eigen-

vector corresponding to eigenvalue 1.

Let λ be an eigenvalue of P and the column vector st = (s1, ..., sn)t a corresponding right

eigenvector, so Pst = λst. Let m be an index such that |sm| = max
1≤i≤n

|si|. Then

|λ| |sm| = |λsm| = |(Pst)m|

=

∣∣∣∣∣
n∑
i=1

Pmisi

∣∣∣∣∣ ≤
n∑
i=1

Pmi|si| (11.5)

≤ |sm|
n∑
i=1

Pmi = |sm| (11.6)

from which it follows that |λ| ≤ 1.

(b) We first prove the statement for a strictly positive stochastic matrix P. Assume

Pij > 0 for all i, j ∈ S. Let v be a left eigenvector corresponding to eigenvalue 1. As

proved in part (a), the vector |v| is also an eigenvector for eigenvalue 1, and hence so is

the vector u = 1
2
(v + |v|). Note that by construction, u has nonnegative entries. Since P

is a strictly positive matrix, it follows from uP = u that either u = 0 (the zero vector) or

u is a strictly positive vector. This implies that either all entries of v are strictly negative

(in which case −v is a strictly positive eigenvector) or all entries of v are strictly positive.

In order to show that eigenvalue 1 has geometric multiplicity 1, consider two left eigen-

vectors v′ and v′′ for eigenvalue 1. By the above, we can assume that each of them is a

strictly positive vector (if not, take its negative). Furthermore, we will assume that v′

and v′′ have been normalized, so for both vectors the entries sum to one. Then the vector

u = v′ − v′′ is also a left eigenvector corresponding to eigenvalue 1, and its entries sum

to 0. This means that either u has entries of mixed sign (which we have shown to be

impossible), or all entries of u are 0. We must have the latter, and so we have shown that

v′ = v′′. This proves that the eigenspace corresponding to eigenvalue 1 has dimension 1,

and so eigenvalue 1 has geometric multiplicity 1.

We will now show that eigenvalue λ1 = 1 has algebraic multiplicity 1. Assume its algebraic

multiplicity is greater than one. Then, for some suitable basis of Cn (a Jordan basis), the

matrix P contains a (k× k) Jordan block (with k ≥ 2) for eigenvalue 1. And there exists

a (possibly complex) column vector ut such that Put = ut + wt where wt = (1, 1, ..., 1)t.
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In the following, Re (x) denotes the real part of a complex number x. Let m be an index

such that Re (um) = max
1≤i≤n

Re (ui). Then

Re (um) + 1 = Re (Put)m = Re

(
n∑
i=1

Pmiui

)

≤ Re

(
n∑
i=1

Pmium

)
= Re (um) .

Since this is a contradiction, any Jordan block for eigenvalue 1 must have dimension 1.

Since we have also shown that there exists exactly one Jordan block for eigenvalue 1, it

follows that eigenvalue 1 has algebraic multiplicity 1.

By Corollary 2.4.5, the transition matrix P of an irreducible and aperiodic Markov chain

is regular. So there exists N > 0 such that Pn is strictly positive for n ≥ N . We apply the

above results to PN . Also note that if λ is an eigenvalue of P, then λN is an eigenvalue

of PN , and that the corresponding eigenvectors are the same. It follows that λ1 = 1 is an

eigenvalue of P. Since taking powers of a matrix preserves the algebraic multiplicities of

the corresponding eigenvalues of its matrix powers, the algebraic multiplicity of λ1 = 1

for P must be 1, and hence the geometric multiplicity of λ1 = 1 for P is also 1.

(c) This is a direct consequence Part II of the Perron–Frobenius theorem (see Theorem

A.6.2(e)). We omit the proof for this part.

Note that, although we have given direct proofs for parts (a) and (b) of Proposition

11.2.1, these parts would also directly follow from Part I of the Perron–Frobenius theorem

(Theorem A.6.1).

From Proposition 11.2.1 we can derive an alternate proof for convergence to stationarity

for a finite-state, ergodic Markov chain: Let P be the transition matrix for an irreducible,

aperiodic, finite-state Markov chain. Then there exists a (possibly complex) invertible

matrix S (whose column vectors form a Jordan basis of Cn with respect to P, and whose

first column vector we choose to be wt = (1, 1, ..., 1)t) such that

J = S−1PS

where J is the block-diagonal matrix

J = diag(1,J(λ2,n2), ...,J(λk,nk)) .
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The (ni×ni) square matrices J(λi,ni) along the diagonal of J are called the Jordan blocks.

For each index i = 2, ..., k, its corresponding Jordan block is of the form

J(λi,ni) =


λi 1

0 λi
. . .

. . . . . . 1

0 λi


where λi is an eigenvalue of P, |λi| < 1, and all matrix entries that are not marked are

understood to be 0. We have 1 + n2 + · · ·+ nk = n.

Since for |λi| < 1 we have[
Jλi,ni

]m m→∞−−−−−→ 0(ni×ni) (the (ni × ni) zero matrix),

it follows that

Pm = SJmS−1 m→∞−−−−−→ S


1 0 · · · 0

0 0 · · · 0
...

...
...

...

0 0 · · · 0

S−1,

and so the limit lim
m→∞

Pm exists. Moreover, note that

S


1 0 · · · 0

0 0 · · · 0
...

...
...

...

0 0 · · · 0

 =


1 0 · · · 0

1 0 · · · 0
...

...
...

...

1 0 · · · 0

 .

It follows that the matrix limit L = S[diag(1, 0, ..., 0)]S−1 is a stochastic matrix all of

whose rows are the same (they are equal to the first row of S−1). Let π denote this

constant row vector. Altogether, we have shown that

lim
m→∞

Pm =

 ← π →
...

← π →

 .

The distribution π is the limiting distribution, hence the unique stationary distribution

for the Markov chain that has transition matrix P. This reproves the convergence theorem

for finite-state ergodic Markov chains (which we have proved in a more general setting in

Section 3.2). Alternatively, the result follows from the statement of Theorem A.6.1 part

(e) (Perron–Frobenius Theorem, Part I).
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In this chapter we present several approaches that allow us to obtain quantitative results

for the rate of convergence to stationarity.

In the following subsection, we will show that for a finite-state ergodic Markov chain,

there is always an exponential rate of convergence to stationarity, and we will find a way

to estimate this rate of convergence in terms of the eigenvalues of the transition matrix

P. Towards this end, we need to understand the spectral representation of P. In order to

avoid too many technicalities, we will focus our discussion on ergodic Markov chains that

are also reversible and therefore have a diagonalizable transition matrix P (over R).

11.2.1 Spectral decomposition of the transition matrix

Throughout this section, we will assume that P is the transition matrix for an irre-

ducible, aperiodic, and reversible Markov chain on state space S = {1, ..., n}.
Let π be the stationary distribution for this Markov chain. Since the Markov chain is irre-

ducible, π is strictly positive on S. Consider the diagonal matrix D = diag(π(1), ..., π(n))

and its square root

D
1
2 = diag(

√
π(1), ...,

√
π(n)) .

Let P∗ = D
1
2 PD−

1
2 . Then the matrix entries P ∗ij of P∗ are

P ∗ij =

√
π(i)√
π(j)

Pij .

Since we assume P is reversible with respect to π, we have

P ∗ij = P ∗ji ,

and so P∗ is a symmetric matrix. By the Spectral Theorem (see Theorem 7.2.5), P∗ is

orthogonally diagonalizable. Let {s1, ..., sn} be an orthonormal basis of Rn (with respect to

the standard Euclidian inner product) of right eigenvectors of P∗. We assume P∗s1 = s1

and P∗sk = λksk for 2 ≤ k ≤ n. Since P and P∗ are similar matrices, they have the

same set of eigenvalues {1, λ2, ..., λn} ⊂ (−1, 1]. Recall that, since the Markov chain is

irreducible and aperiodic, the multiplicity of eigenvalue λ1 = 1 is one, and therefore −1

is not an eigenvalue. We can write

P∗ = SΛSt (11.7)

where S is the matrix whose column vectors are {s1, ..., sn} (and so its matrix entries are

Sik = sk(i)), and furthermore St denotes the transpose of S, and

Λ = diag(1, λ2, ..., λn) .
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From (11.7) we get

P ∗ij =
n∑
k=1

SikλkSjk

and thus

Pij =

√
π(j)√
π(i)

n∑
k=1

SikλkSjk .

Moreover, since P = D−
1
2 SΛStD

1
2 , we have

Pm = D−
1
2 SΛmStD

1
2 ,

and so

Pm
ij =

√
π(j)√
π(i)

n∑
k=1

Sikλ
m
k Sjk . (11.8)

We can rewrite (11.8) as

Pm
ij =

√
π(j)√
π(i)

Si1Sj1 +

√
π(j)√
π(i)

n∑
k=2

Sikλ
m
k Sjk . (11.9)

Since Pm
ij

m→∞−−−−→ π(j) and lim
m→∞

λmk = 0 for 2 ≤ k ≤ n, equation (11.9) implies

Pm
ij = π(j) +

√
π(j)√
π(i)

n∑
k=2

Sikλ
m
k Sjk . (11.10)

Alternatively, we can see that

√
π(j)√
π(i)

Si1Sj1 = π(j), by noting that a normalized right

eigenvector s1 of P∗ corresponding to λ1 = 1 is the column vector

s1 = (
√
π(1), ...,

√
π(n))t . (11.11)

So Si1 =
√
π(i) and Sj1 =

√
π(j), which gives the result.

Expression (11.10) is called the spectral representation of the transition probabilities.

From it we see that the absolute values of the non-trivial eigenvalues λ2, ..., λn play a

crucial role in the rate of convergence to stationarity. Define

λ∗ = max{|λ2|, ..., |λn|} .

The spectral representation (11.10) shows that, for all i, j ∈ S, there exists a constant Cij

such that
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|Pm
ij − π(j)| ≤ Cijλ

m
∗ .

Since the state space is finite, the maximum maxi,j∈S Ci,j exists. We conclude that for

any initial distribution µ0, the distributions µm = µ0P
m converge to π in total variation

distance exponentially fast. That is, there exists a constant C̃ such that

‖µm − π‖TV ≤ C̃ λm∗ for all m ≥ 1 .

For specific examples, it may however be difficult to compute the constants Cij, since they

involve knowing the eigenvectors, and therefore difficult to compute C̃. The next section

gives an upper bound for total variation distance in terms of the eigenvalues that does

not require computation of these constants.

When a Markov chain with transition matrix P is periodic, there is no convergence. To

avoid this issue, we often consider a lazy version of the Markov chain by adding positive

holding probability to each state. In such a case, it is fairly standard to add holding

probability of 1
2
. We then work with the modified transition matrix

P̃ =
1

2
P +

1

2
I .

where I is the identity matrix of order |S|. Note that P and P̃ have the same stationary

distribution, and that P̃ is reversible if P is reversible. A additional advantage of working

with P̃ is that all eigenvalues of P̃ are nonnegative:

Lemma 11.2.2. Let P be the transition matrix of a reversible, irreducible Markov

chain. Consider its lazy version P̃ = 1
2
P + 1

2
I. Then all eigenvalues of P̃ are

nonnegative.

Proof. Let s be an eigenvector of P̃ corresponding to eigenvalue λ̃. Thus

P̃s = (
1

2
P +

1

2
I)s =

1

2
Ps +

1

2
s = λ̃s .

It follows that

Ps = (2λ̃− 1)s ,

and therefore (2λ̃− 1) is an eigenvalue of P. But (2λ̃− 1) ≥ −1, and therefore λ̃ ≥ 0.

Adding holding probability 1
2

to each state does slow down the convergence rate of the

process, but not in a significant way. Very roughly, it will double the mixing time.
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11.2.2 Spectral bounds on total variation distance

Consider a Markov chain (Xn)n≥0 on finite state space S. Assuming the Markov chain

starts in state x, we will denote the distribution of Xm by Pm
x,· .

Theorem 11.2.3. Let P be the transition matrix for an irreducible, aperiodic, and

reversible Markov chain on state space S = {1, ..., n} with stationary distribution

π. Let {1, λ2, ..., λn} be the set of (necessarily real) eigenvalues of P, and let λ∗ =

max{|λ2|, ..., |λn|}. Then

4‖Pm
x,· − π‖2

TV ≤
1− π(x)

π(x)
λ2m
∗ . (11.12)

If the Markov chain arises from a random walk on a group G with symmetric step

distribution µ, then

4‖Pm
x,· − π‖2

TV ≤
n∑
k=2

λ2m
k ∀x ∈ G . (11.13)

Recall from Exercise 10.6 that for a random walk on a group G with step distribution µ,

we have ‖Pm
x,· − π‖TV = ‖µ?m − π‖TV for all x ∈ G. In this case, total variation distance

to stationarity does not depend on the initial distribution.

Proof of Theorem 11.2.3.

4‖Pm
x,· − π‖2

TV =

(∑
y∈S

|Pm
xy − π(y)|

)2

=

(∑
y∈S

|Pm
xy − π(y)|√
π(y)

√
π(y)

)2

≤
∑
y∈S

(Pm
xy − π(y))2

π(y)

=
∑
y∈S

1

π(y)

(
(Pm

xy)
2 − 2Pm

xyπ(y) + (π(y))2
)

=
∑
y∈S

1

π(y)
(Pm

xy)
2 − 1

=
1

π(x)
P 2m
xx − 1 (11.14)

where the inequality in the third line is an application of the Cauchy–Schwartz inequality,
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and (11.14) follows from reversibility. Indeed, since π(y)Pm
yx = π(x)Pm

xy, we have∑
y∈S

1

π(y)
(Pm

xy)
2 =

∑
y∈S

1

π(x)
Pm
xyP

m
yx =

1

π(x)
P 2m
xx .

From (11.10) we have

P 2m
xx = π(x) +

n∑
k=2

Sxkλ
2m
k Sxk

an thus

P 2m
xx ≤ π(x) + λ2m

∗

n∑
k=2

SxkSxk

= π(x) + λ2m
∗ (1− π(x)) . (11.15)

Note that equality (11.15) follows from (11.11) and the orthogonality of the matrix S.

Inequality (11.12) follows from combining (11.14) and (11.15).

Now assume the Markov chain arises from random walk on a group G with step distribu-

tion µ. The stationary distribution π is uniform on G, that is, π(x) = 1
|G| for all x ∈ G.

Furthermore, the diagonal elements P 2m
xx of P2m do not depend on x since P 2m

xx = µ∗2m(id).

Thus
1

π(x)
P 2m
xx − 1 = |G|P 2m

xx − 1

= trace(P2m)− 1 =
n∑
k=2

λ2m
k ,

and (11.13) follows from (11.14). �

11.2.3 Random walk on the discrete circle

Let (Yn)n≥0 be symmetric random walk on the discrete N -cycle ZN . The group operation

is + (mod N). The step distribution is µ(1) = µ(−1) = 1
2
. To avoid periodicity, we

assume N is odd. See Figure 11.3. Assume the walk starts in state 0. Since this is

random walk on a group, the stationary distribution is uniform distribution Unif(ZN).

0

1
2

1
2

Figure 11.3
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We computed the eigenvalues for this random walk in Example 10.3.1. They are

λk = cos(2πk/N) for k ∈ {0, 1, ..., (N − 1)} .

Note that each eigenvalue other than eigenvalue 1 has multiplicity 2. Therefore we can

write the sum in (11.13) as

2

(N−1)/2∑
k=1

[cos(2πk/N)]2m .

Using the Taylor expansion for cos x, we get cosx ≤ 1− (x
2

2
− x4

4!
). Since 1

2
− x2

4!
> 1

12
for

for 0 ≤ x ≤ π, we have

cosx ≤ 1− x2

12
≤ e−

x2

12 for 0 ≤ x ≤ π.

Thus we get from (11.13),

‖µ∗m − Unif(ZN) ‖2
TV ≤ 1

2

(N−1)/2∑
k=1

[cos(2πk/N)]2m

≤ 1

2

(N−1)/2∑
k=1

e−(2π2k2m)/(3N2)

=
1

2
e−(2π2m)/(3N2)

(N−1)/2∑
k=1

e−(2π2(k2−1)m)/(3N2)

≤ 1

2
e−(2π2m)/(3N2)

∞∑
j=0

e−(2π2jm)/(3N2)

= e−(2π2m)/(3N2) 1

2(1− e−(2π2m)/(3N2))
.

For m ≥ N2, the denominator in the last expression is

2(1− e−(2π2m)/(3N2)) ≥ 1 .

Thus, altogether, we get

‖µ∗m − Unif(ZN) ‖TV ≤ e−(π2m)/(3N2)

for m ≥ N2. This shows that total variation distance is guaranteed to be less than 0.037

if the number m of steps is m ≥ N2. We conclude that the mixing time as a function of

the size N of the state space is of order O(N2).

Cover time: Recall the definition of cover time tcov (Definition 8.5.1) for a Markov chain

(Yn)n≥0: It is defined as tcov = maxx∈S Ex(T cov) for the random variable

T cov = min{n : ∀y ∈ S, ∃k ≤ n, s.t. Yk = y} .
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It should be intuitively clear that the cover time tcov is related to the mixing time tmix,

since the Markov chain must visit every state at least once before it can be “reasonably

close” to stationarity. Recall Example 8.5.3: The cover time tcov for simple symmetric

random walk on the cyclic group ZN is

tcov =
1

2
N(N − 1).

Thus, asymptotically as N → ∞, the cover time is of order Θ(N2). This matches the

upper bound for mixing rate which we have computed using eigenvalues and found to be

of order O(N2).

The last new state visited: We include a surprising result about simple symmetric

random walk on ZN that concerns the distribution of the last new state the walk visits.

The following proposition is taken from [27]. See also [2].

Proposition 11.2.4. Consider simple symmetric random walk on the discrete cycle

ZN with vertices S = {0, 1, 2..., (N − 1)}. Without loss of generality, assume that

the walk starts at vertex 0. Let L be the random variable that is the last new vertex

reached by the random walk. Then L has uniform distribution on the set of vertices

{1, 2, ..., (N − 1)}.

Proof. Let k ∈ {1, 2, ..., (N − 1)}. The walk starts at vertex 0. For the adjacent vertices

k = 1 or k = N−1, cutting open the circle (either at vertex k = 1 or at vertex k = N−1),

flattening the circle into a discrete line segment, and using the gambler’s ruin formulas

(4.18) yields

P(L = 1) = P(L = N − 1) =
1

N − 1
.

For k ∈ {2, ..., N − 2}, we compute P(L = k) by conditioning on the second-to-last new

vertex visited (which is either k − 1 or k + 1). Doing so, we get

P0(L = k) = P0(T k−1 < T k+1)Pk−1(T k+1 < T k) + P0(T k+1 < T k−1)Pk+1(T k−1 < T k) .

Again, using formulas (4.18), we compute

P0(L = k) =
(N − k − 1)

(N − 2)

1

(N − 1)
+

(k − 1)

(N − 2)

1

(N − 1)
=

1

N − 1
for k ∈ {2, ..., N − 2} .
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Remark 11.2.5. By symmetry, a complete graph with N vertices has the same

property that Proposition 11.2.4 states for the N-cycle: For simple random walk

on a complete graph, for any starting vertex k, the last vertex that is reached is

uniformly distributed over all vertices (not including k). Lovász and Winkler prove

in [27] that the N-cycle and the complete graph with N vertices are in fact the only

graphs that have this property.

11.2.4 The Ehrenfest chain

We have introduced the Ehrenfest chain for N particles in Section 1.5 as an urn model

for gas diffusion through a porous membrane. The state of the system at time n is the

number of particles in Box 1 at time n. The state space is S = {0, 1, ..., N}, and the

stationary distribution is Bin(N, 1
2
).

Box 1 Box 2

Figure 11.4: Ehrenfest chain

The Ehrenfest chain can be “lifted” to simple random walk on the hypercube ZN2 (or,

equivalently stated, the Ehrenfest chain is a lumped version of simple random walk on

ZN2 ). How many steps suffice for the system to be in or very near equilibrium, that is, for

the number of balls in Box 1 to be approximately distributed Bin(N, 1
2
)? To answer this

question, we will apply the upper bound (11.13) to random walk on to ZN2 . Assume the

random walk starts in state (0, ..., 0) (i.e., the Ehrenfest chain starts in state 0). To avoid

periodicity, we consider lazy simple random walk. The step distribution µ is defined by

µ(0, ..., 0) = 1
2

and

µ(1, 0, ..., 0) = µ(0, 1, 0, ..., 0) = · · · = µ(0, ..., 0, 1) =
1

2N
.

We have computed the eigenvalues for (lazy) random walk on the hypercube in Example

10.3.2. They are

N − j
N

with multiplicity

(
N

j

)
for j = 0, 1, ..., N ,
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and so, by (11.13),

4‖µ∗m − Unif(ZN2 ) ‖2
TV ≤

N∑
j=1

(1− j

N
)2m

(
N

j

)
.

Using the estimate 1− j
N
≤ e−

j
N , we get

4‖µ∗m − Unif(ZN2 ) ‖2
TV ≤

N∑
j=1

e−
j
N

2m

(
N

j

)
= (1 + e−

2m
N )N − 1 .

Take c > 0 and let m = 1
2
N lnN + cN . This yields

(1 + e−
2( 12N lnN+cN)

N )N − 1 = (1 +
1

N
e−2c)N − 1 ,

which, since lim
n→∞

↑ (1 +
1

n
)n = e, yields the estimate

4‖µ∗m − Unif(ZN2 ) ‖2
TV ≤ ee

−2c − 1 .

The expression on the right hand side can be made arbitrarily small for a suitable c > 1.

Hence ‖µ∗m − Unif(ZN2 ) ‖TV will be small for m = 1
2
N lnN + cN and for suitable c > 1.

Running the random walk a number of m = O(N lnN) steps suffices to be close to

stationarity.

Since the Ehrenfest chain for N particles is a lumped version of random walk on ZN2 , the

same upper bound for distance to stationarity is valid (see Exercises 11.2 and 11.3). We

conclude that for the Ehrenfest chain with N particles, a number of m = O(N lnN) steps

suffice for the chain to be close to its stationary distribution Bin(N, 1
2
). �

11.3 Coupling

11.3.1 Definition of Coupling

In probability, coupling refers to a method by which two or more random variables (or

sequences of random variables) are constructed on a common probability space Ω. A

coupling is in effect a construction of a joint probability distribution, that is, a

dependency structure for given random variables, that preserves their given marginal

distributions. With the use of such a coupling one can derive information about each of

the random variables by exploiting certain properties of their joint distribution. There

are many ways in which one can couple given random variables. The usefulness of the

method will depend on a judicious choice among all possible couplings, given the specific

problem at hand.
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Definition 11.3.1. Let S be a discrete space and µ and ν two probability distribu-

tions on S. A coupling of µ and ν is a pair of random variables (X, Y ) : Ω→ S×S
on a probability space (Ω,F ,P) such that the marginal distribution of X is µ and

the marginal distribution of Y is ν, that is,

P(X ∈ A) = µ(A) and P(Y ∈ B) = ν(B) for all A,B ⊆ S .

The underlying probability space (Ω,F ,P) provides the common source of random-

ness for the two random variables X and Y .

Note that a specific coupling (X, Y ) of µ and ν induces a specific joint probability distri-

bution ω (i.e., the distribution of the random vector (X, Y )) on the product space S × S
whose marginals are µ and ν:

µ(x) =
∑
y∈S

ω(x, y) and ν(z) =
∑
y∈S

ω(y, z) for all x, z ∈ S .

Conversely, any bivariate distribution ω on S × S that has marginals µ and ν defines

random variables X ∼ µ and Y ∼ ν with joint distribution ω and thus defines a coupling

(X, Y ) of µ and ν.

The common probability space (Ω,F ,P) underlying a coupling is not unique. We can

always consider Ω = S × S, in which case the random vector (X, Y ) of the coupling

becomes the identity map on S × S, and the common probability space is

(S × S, P(S × S), ω) .

Example 11.3.1 (Two coin tosses). Consider two biased coins. Let the state space for

each coin toss be S = {0, 1}, and consider X ∼ µ with µ(1) = p, µ(0) = 1− p and Y ∼ ν

with ν(1) = q, ν(0) = 1− q. Assume p < q.

(a) Independent coupling. The joint distribution is given by

X \ Y 0 1

0 (1− q)(1− p) q(1− p)
1 p(1− q) pq

.

(b) Consider a uniform random variable U ∼ Unif([0, 1]). We define

X =

{
1 if 0 < U ≤ p

0 if p < U ≤ 1
, Y =

{
1 if 0 < U ≤ q

0 if q < U ≤ 1
.
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0 p q 1

(X,Y ) = (1, 1)

(X, Y ) = (0, 1)

(X, Y ) = (0, 0)

Figure 11.5: A possible coupling for two coin tosses with distinct biases

Here the random variable U is the common source of randomness for the coupling,

and we can take Ω = [0, 1]. See Figure 11.5. The joint distribution is given by

X \ Y 0 1

0 1− q q − p
1 0 p

.

�

Example 11.3.2 (Two identically distributed coin tosses). The state space is S = {0, 1}.
Consider X ∼ µ1, Y ∼ µ2 with µi(1) = p, µi(0) = 1 − p for i = 1, 2. For each s with

0 ≤ s ≤ min{p, 1− p} we have a coupling ωs of µ1 and µ2 given by

X \ Y 0 1

0 1− p− s s

1 s p− s
.

For s = p(1− p), the two coin tosses are independent. For s = 0, we have X = Y which

constitutes maximum dependence. �

Proposition 11.3.1. Let µ and ν be two probability distributions on S and (X, Y )

a coupling of µ and ν. Then

‖µ− ν‖TV ≤ P(X 6= Y ) . (11.16)

Hence

‖µ− ν‖TV ≤ inf
couplings (X,Y )

P(X 6= Y ) (11.17)

where the infimum in (11.17) is taken over all couplings (X, Y ) of µ and ν.



11.3. COUPLING 323

Proof. Let A ⊆ S and (X, Y ) a coupling of µ and ν. We have

µ(A)− ν(A) = P(X ∈ A)− P(Y ∈ A)

= P(X ∈ A,X = Y ) + P(X ∈ A,X 6= Y )− P(Y ∈ A,X = Y )− P(Y ∈ A,X 6= Y )

= P(X ∈ A,X 6= Y )− P(Y ∈ A,X 6= Y )

≤ P(X ∈ A,X 6= Y )

≤ P(X 6= Y ) .

Reversing the roles of µ and ν yields

|µ(A)− ν(A)| ≤ P(X 6= Y )

from which we get

max
A⊆S
|µ(A)− ν(A)| = ‖µ− ν‖TV ≤ P(X 6= Y ) .

This proves (11.16). Taking the infimum over all couplings on both sides of (11.16) yields

(11.17).

Example 11.3.3. We return to Example 11.3.1 of two biased coin tosses. The total

variation distance of µ and ν is

‖µ− ν‖TV =
1

2
(|p− q|+ |(1− p)− (1− q)|) = |q − p| .

(a) For the independent coupling, we get

P(X 6= Y ) = q(1− p) + p(1− q) = q − p(2q − 1) .

Recall that we are assuming q > p, and so

‖µ− ν‖TV = q − p ≤ q − p(2q − 1) = P(X 6= Y )

which confirms (11.16).

(b) For the coupling in Example 11.3.1(b), we get

P(X 6= Y ) = q − p .

So here we have

‖µ− ν‖TV = P(X 6= Y ) .

This coupling is an example of an optimal coupling (see the following definition). �
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Definition 11.3.2. A coupling (X, Y ) of µ and ν is called an optimal coupling

if

‖µ− ν‖TV = P(X 6= Y ) .

For an optimal coupling, the two random variables are most strongly coupled in the sense

that P(X = Y ) is as large as possible.

Proposition 11.3.2. Let µ and ν be two probability distributions on S. There

always exists an optimal coupling (X, Y ) for µ and ν. As a consequence, we get the

following improvement to (11.17):

‖µ− ν‖TV = min
couplings (X,Y )

P(X 6= Y ) . (11.18)

Exercise 11.7 guides the reader through the construction of an optimal coupling.

11.3.2 Coupling of Markov chains

Recall that above, in order to construct a coupling of two random variables X and Y ,

we have constructed a common underlying probability space (i.e. a common source of

randomness) on which the two random variables are defined. Here we will extend the idea

of coupling to two Markov chains, that is to two entire sequences of random variables.

Let S be a (finite or infinite) discrete state space and S and P a stochastic matrix indexed

by elements in S. We will call a Markov chain with state space S and transition matrix

P a P-Markov chain.

Definition 11.3.3. Let S be a discrete state space and P a stochastic matrix indexed

by S. A coupling of a P-Markov chain with initial distribution µ0 and a P-Markov

chain with initial distribution ν0 is a stochastic process (Xn, Yn)n≥0 with state space

S × S such that

(a) all random variables Xn and Yn are defined on the same probability space,

(b) (Xn)n≥0 is a P-Markov chain with initial distribution µ0,

(c) (Yn)n≥0 is a P-Markov chain with initial distribution ν0.

Note that Definition 11.3.3 does not require the stochastic process (Xn, Yn)n≥0 that defines

a coupling to be a Markov chain. In all examples that we will present, the coupling will

be a Markov chain.
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Example 11.3.4. Consider simple random walk on the N -cycle ZN (the integers mod

N). Here we include holding probability of h = 1
2

for each state. There are two reasons for

adding holding probability: Adding holding probability eliminates periodicity if N is even,

and it allows us to construct a fairly simple coupling which we describe below. Note that

modifying a chain by adding a fixed holding probability to each state and proportionally

changing all other transition probabilities does not significantly change the mixing time.

For example, adding holding probability of 1
2

to simple random walk on the N -cycle will

slow down convergence by a factor of 2. With holding probability 1
2
, on average, the walk

will move to one of its neighbors only half of the time. See also Remark 4.4.2.

Fix p ∈ (0, 1
2
). The transition probabilities for the P-Markov chain on ZN are Pzz = 1

2
,

Pz,z+1 = p, and Pz,z−1 = q for z ∈ ZN . We assume p+q+ 1
2

= 1. We let the chain (Xn)n≥0

start in state x (so µ0 ∼ δx), and we let the chain (Yn)n≥0 start in state y (so ν0 ∼ δy).

See Figure 11.6.

x

y1
2

1
2

p

q

p

q

Figure 11.6: Simple random walk on ZN with holding probability 1
2

Consider a sequence (Un)n≥1 of i.i.d random variables with U1 ∼ Unif([0, 1]). A possible

coupling (Xn, Yn)n≥0 of the two chains proceeds as follows. The process starts in state

(x, y) ∈ ZN × ZN . For n ≥ 1, if (Xn−1, Yn−1) = (x′, y′), then
(Xn, Yn) = (x′ + 1, y′) if 0 ≤ Un ≤ p ,

(Xn, Yn) = (x′ − 1, y′) if p < Un ≤ 1
2
,

(Xn, Yn) = (x′, y′ + 1) if 1
2
< Un ≤ 1

2
+ p ,

(Xn, Yn) = (x′, y′ − 1) if 1
2

+ p < Un ≤ 1 .

See Figure 11.7. Here the common underlying source of randomness for the two chains

is the sequence (Un)n≥1. An alternate description of this coupling would be to say that

(Xn, Yn)n≥0 is a random walk on the discrete torus ZN × ZN that starts at state (x, y)

and whose step random variable (ξX , ξY ) has distribution

P
(
(ξX , ξY ) = (1, 0)

)
= P

(
(ξX , ξY ) = (0, 1)

)
= p , and

P
(
(ξX , ξY ) = (−1, 0)

)
= P

(
(ξX , ξY ) = (0,−1)

)
= q .
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0 1
2

1

p q p q

(1, 0)(ξX , ξY ) : (−1, 0) (0, 1) (0,−1)

Y movesX moves

Figure 11.7: A coupling of two simple random walks on ZN

So

(Xn, Yn) = (x, y) +
n∑
k=1

(ξXk , ξ
Y
k )

where (ξXk , ξ
Y
k )k≥1 is an i.i.d. sequence with (ξX1 , ξ

Y
1 ) ∼ (ξX , ξY ). For this description of

the coupling, we can view the common underlying probability space Ω for all random

variables Xn and Yn as the space of all infinite sequences ω = (ω1, ω2, ...) with entries

ωi ∈ {(±1, 0), (0,±1)} for i ≥ 1. �

For a given coupling (Xn, Yn)n≥0 of two Markov chains (Xn)n≥0 and (Yn)n≥0, the so-called

coupling or coalescence time Tcouple defined by

Tcouple = min{n ≥ 0 : Xn = Yn}

will play an important role. It is a stopping time for the process (Xn, Yn)n≥0. We can

(and in fact, we usually will) define any coupling (Xn, Yn)n≥0 in such a way that once the

two chains meet, that is from time Tcouple onwards, they will move in lockstep. We do so

by stipulating

Xn = Yn for n ≥ Tcouple .

See Figure 11.8.

Example 11.3.5 (Independent coupling until time Tcouple). Consider a (finite or infinite)

stochastic matrix P indexed by a state space S and two P-chains (Xn)n≥0 and (Yn)n≥0

on S. Here we allow the two chains to move independently until Xn = Yn for the first

time, which happens at time Tcouple. From then onwards, the two chains make the same

jumps. More precisely, we define a Markov chain (Xn, Yn)n≥0 on S × S with transition

probabilities

P(x,y),(x′,y′) = Px,x′Py,y′ if x 6= y, and

P(x,y),(x′,y′) = Px,x′ if x = y and x′ = y′

P(x,y),(x′,y′) = 0 otherwise .
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Tcouple

X0

Y0

1 2 3
0 n

time

Figure 11.8: Coalescence time for a sample path for a coupling (Xn, Yn)n≥0

Exercise 11.10 asks the reader to verify that the above probabilities define a coupling for

(Xn)n≥0 and (Yn)n≥0. Note that Tcouple is not necessarily a finite random variable. In

this context, also recall Example 3.2.1. It is an example of a coupling that is a reducible

Markov chain. �

Theorem 11.3.3 (Coupling inequality). Let (Xn, Yn)n≥0 be a coupling of a P-

Markov chain (Xn)n≥0 on S and a P-Markov chain (Yn)n≥0 on S. We denote the

distribution of Xn by µn and the distribution of Yn by νn for n ≥ 0. Then

‖µn − νn‖TV ≤ P(Tcouple > n) . (11.19)

Proof. For any fixed time n, (Xn, Yn) is a coupling of the two distributions µn and νn on

S. By Proposition 11.3.1,

‖µn − νn‖TV ≤ P(Xn 6= Yn) .

Since, per our assumption, the two chains run in lockstep after coupling, we have

P(Xn 6= Yn) = P(Tcouple > n)

which establishes (11.19).

Consider an irreducible, positive recurrent, and aperiodic Markov chain (Xn)n≥0 with

initial distribution µ0 and stationary distribution π. Let µn denote the distribution of the

chain at time n. The Coupling inequality (11.19) re-establishes (we have seen this before)

convergence to stationarity with respect to total variation distance, that is, it implies

‖µn − π‖TV
n→∞−−−−→ 0 . (11.20)
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Proving (11.20), based on (11.19), is the object of Exercise 11.12.

Example 11.3.6 (Random-to-top shuffle). We have introduced random-to-top shuffling

in Section 10.2 as the time reversed random walk to top-to-random shuffling. Both random

walks have the same rate of convergence to stationarity. We will construct a coupling for

random-to-top shuffling.

2

n

1
2

n

k

1

Figure 11.9: Random-to-top shuffle

Consider two P-Markov chains (Xn)n≥0 and (Yn)n≥0 on the permutation group Sn. Each

of the two P-chains is a random walk on Sn with step distribution µ̃ ∼ Unif(C̃) for

C̃ = {id, σ2, ..., σn}, where σk denotes the cyclic permutation

σk = (k → (k − 1)→ (k − 2)→ · · · → 1→ k) for 2 ≤ k ≤ n .

Assume Markov chain (Xn)n≥0 starts at the identity id (perfect order), and Markov chain

(Yn)n≥0 starts in stationary (i.e., here uniform) distribution π. The coupling (Xn, Yn)n≥0

is constructed as follows. At each step, draw k ∈ {1, ..., n} uniformly at random. In each

of the two decks, take Card k and put it on the top of the pile. Both chains are evolving

according to the transition probabilities for a random-to-top shuffle. Since Markov chain

(Yn)n≥0 starts in stationary distribution, it remains in stationary distribution. Note that

once Card k has been selected an put on top of both piles, it will be in the same location

in both piles at all future times. Consider the stopping time

T = min{n : all cards have been selected at least once} .

Clearly,

Tcouple ≤ T ,

and therefore,

P(Tcouple > n) ≤ P(T > n) .

The random time T has the same distribution as the waiting time for the coupon collec-

tors problem (see Section B.6). Using Lemma B.6.1, in combination with the coupling

inequality (11.19), we get for k = n lnn+ cn random-to-top shuffles of n cards,

‖µk − π‖TV ≤ e−c .
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After k random-to-top shuffles where k = O(n lnn), the deck is near “completely mixed

up”. The same is true for top-to-random shuffle. �

In applications, it is often easiest to construct a coupling (Xn, Yn)n≥0 of two P-Markov

chains for which (Xn)n≥0 starts in a given state x and (Yn)n≥0 starts in a given state y

(as in Example 11.3.4). We can use such couplings to study the rate of convergence to

stationarity for a P-Markov chain that starts in a more general initial distribution µ0.

Theorem 11.3.5 below is a related result.

We will use the following notation: (X
(x)
n )n≥0 will denote a P-Markov chain starting in

state x and µ
(x)
n will denote the distribution of X

(x)
n . Note that with this notation, we have

µ
(x)
n (z) = P n

xz for z ∈ S. Furthermore, P(x,y) will denote the probability that is associated

with a coupling (X
(x)
n , X

(y)
n )n≥0.

Lemma 11.3.4. Let (Xn)n≥0 be an irreducible, aperiodic, and positive recurrent

P-Markov chain on finite state space S, and let π be the stationary distribution.

We denote the distribution of Xn by µn for n ≥ 0. Then

‖µn − π‖TV ≤ max
x,y∈S

‖µ(x)
n − µ(y)

n ‖TV . (11.21)

Proof. Fix x ∈ S. We will first show ‖µ(x)
n −π‖TV ≤ max

y∈S
‖µ(x)

n −µ(y)
n ‖TV . Note that since

π is the stationary distribution, we have

π(E) =
∑
y∈S

π(y)µ(y)
n (E) for all E ⊆ S .

We have

‖µ(x)
n − π‖TV = sup

E⊆S
|µ(x)
n (E)− π(E)|

= sup
E⊆S

∣∣∣∣∣∑
y∈S

π(y)
[
µ(x)
n (E)− µ(y)

n (E)
]∣∣∣∣∣

≤ sup
E⊆S

∑
y∈S

π(y)
∣∣µ(x)
n (E)− µ(y)

n (E)
∣∣

≤ max
y∈S
‖µ(x)

n − µ(y)
n ‖TV

∑
y∈S

π(y) = max
y∈S
‖µ(x)

n − µ(y)
n ‖TV .

This proves

‖µ(x)
n − π‖TV ≤ max

y∈S
‖µ(x)

n − µ(y)
n ‖TV . (11.22)
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Proving the inequality

‖µn − π‖TV ≤ max
x∈S
‖µ(x)

n − π‖TV (11.23)

is the content of Exercise 11.6. Combining (11.22) and (11.23) yields

‖µn − π‖TV ≤ max
x∈S

[
max
y∈S
‖µ(x)

n − µ(y)
n ‖TV

]
which proves (11.21).

Theorem 11.3.5. Let (Xn)n≥0 be an irreducible, aperiodic, and positive recurrent

P-Markov chain on finite state space S, and let π be the stationary distribution.

We denote the distribution of Xn by µn for n ≥ 0. Assume for each pair of states

x, y ∈ S there exists a coupling (X
(x)
n , X

(y)
n )n≥0. Then

‖µn − π‖TV ≤ max
x,y∈S

P(x,y)(Tcouple > n) (11.24)

and, as a consequence,

‖µn − π‖TV ≤ max
x,y∈S

E(x,y)(Tcouple)

n+ 1
. (11.25)

Proof. Inequality (11.24) is a combination of (11.21) and (11.19). By Markov’s inequality

(see Appendix B),

P(x,y)(Tcouple > n) ≤ E
(x,y)(Tcouple)

n+ 1

which implies (11.25).

Example 11.3.7 (Rate of convergence for simple random walk on ZN). We return to

Example 11.3.4 and its same set-up. See Figure 11.10.

x

y1
2

1
2

p

q

p

q

Figure 11.10: Simple random walk on ZN with holding probability 1
2
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Fix x, y ∈ ZN . For a coupling (X
(x)
n , X

(y)
n )n≥0 as defined in Example 11.3.4, consider the

process (Dn)n≥0 that tracks the clockwise distance from X
(x)
n to X

(y)
n . Note that in the

above picture, D0 = 7. We have

Tcouple = min{n : Dn = 0 or Dn = N} .

The process (Dn)0≤n≤Tcouple is simple symmetric random walk (without holding probabil-

ity) on the integers {0, 1, ..., N}. See Figure 11.11.

k
0 N

1
2

1
2

Figure 11.11: Tracking the clockwise distance of the two random walks on ZN

Recall formula (4.19). Let T be the time until simple symmetric walk (Dn)n≥0 on

{0, 1, ..., N} hits the boundary {0, N}. Given D0 = k, the expected time E(T |D0 = k) is

E(T |D0 = k) = k(N − k) = E(Tcouple) .

Thus we have

max
x,y∈S

E(x,y)(Tcouple) = max
1≤k≤N−1

E(T |D0 = k) ≤ N2

4
. (11.26)

Combining (11.26) with (11.25), we get for the total variation distance to stationarity at

time n,

‖µn − π‖TV ≤
N2

4(n+ 1)
<
N2

4n
. (11.27)

The right hand side of (11.27) shows that for n ≥ N2, the distance to stationarity is at

most 1
4
. Equivalently, we can state this result in terms of the mixing time for ε = 1

4
:

tmix
1/4 ≤ N2 .

For simple random walk on ZN with holding probability 1
2
, a number of n = N2 steps

suffice for the random walk to be 1
4
-close to stationarity. For simple random walk without

holding probability, n = 1
2
N2 steps suffice. Notice that this result matches out result for

simple symmetric random walk on ZN that we have obtained in Section 11.2.3 with the

use of eigenvalue techniques. �
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11.4 Strong Stationary Times

Consider one of our running examples, simple random walk on the hypercube Zn2 , i.e., the

set of binary n-tuples. To avoid periodicity, we consider the lazy version of the walk that

puts holding probability 1
2

on each state. We can think of this random walk as selecting

a spot j uniformly at random from {1, 2, ..., n}, followed by independently selecting a bit

b uniformly at random from {0, 1}. Then the current state is being updated in location

j with bit b. Note that once every location j has been chosen at least once and updated

(“refreshed” with a random bit), the chain is in uniform distribution. The random time

Tref it takes to refresh every location at least ones is a stopping time for the random

walk on Zn2 . Note that at time Tref , the chain is in exact stationary distribution. It

should be intuitively clear that the distribution of this random time Tref is related to the

rate of convergence to stationarity for the chain. The goal of this section is to make this

relationship precise.

Definition 11.4.1. Consider a Markov chain (Xn)n≥0 with state space S and tran-

sition matrix P. Let (Yn)n≥1 be a sequence of i.i.d. random variables taking values

in a state space R and let f : S ×R → S be a function. If

P(f(x, Y1) = y) = Pxy for all x, y ∈ S ,

we call f together with (Yk)k≥1 a random mapping representation of (Xn)n≥0.

We can directly verify that a random mapping representation in fact constructs the

Markov chain: Given a random variable X0 taking values in a state space S, and given f

and (Yn)n≥1 as defined in Definition 11.4.1, with X0 independent of (Yn)n≥1, the process

(Xn)n≥0 defined by the recurrence relation

Xn = f(Xn−1, Yn) for n ≥ 1 (11.28)

is a Markov chain on state space S with transition matrix P. The auxiliary random

variables (Yn)n≥1, together with X0 which determines the initial distribution, are the un-

derlying source of randomness that determine the evolution of the Markov chain (Xn)n≥0.

Example 11.4.1. Recall the 2-state chain on state space S = {0, 1}. The transition

matrix is

P =

(
1− a a

b 1− b

)
for some fixed a, b ∈ (0, 1). Consider a sequence (Un)n≥1 of i.i.d. random variables with

uniform distribution on the interval (0, 1). We define a function f : {0, 1}×(0, 1)→ {0, 1}
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by

f(0, u) = 0 if u ∈ (0, 1− a]

f(0, u) = 1 if u ∈ (1− a, 1)

f(1, u) = 0 if u ∈ (0, b]

f(1, u) = 1 if u ∈ (b, 1) .

The function f and the sequence (Un)n≥1 define a random mapping representation for the

2-state chain. Using a similar approach, we can construct a random mapping representa-

tion for any finite state Markov chain. �

Example 11.4.2. Consider random walk (Xn)n≥0 on a group G with step distribution

µ. Let (Yn)n≥1 be an i.i.d. sequence of random variable taking values in G with Y1 ∼ µ,

and let f be a function f : G×G→ G defined by

f(x, g) = xg for x, g ∈ G .

Then f and (Yn)n≥1 define a random mapping representation for the random walk. The

i.i.d. sequence (Yn)n≥1 tracks the steps the random walk takes along its trajectory. �

Random mapping representations are not unique. For any given finite-state Markov chain,

one can always construct more than one random mapping representation. The following

example is an illustration.

Example 11.4.3. Recall ‘lazy’ random walk on the hypercube Zk2 from Example 10.3.2.

The group (Zk2,+) is the set of binary vectors x = (x1, ..., xk) of length k, together with

component-wise addition mod 2. The step distribution µ for this random walk is defined

by µ(0, ..., 0) = 1
2

and

µ(1, 0, ..., 0) = µ(0, 1, 0, ..., 0) = · · · = µ(0, ..., 0, 1) =
1

2k
.

The following are two random mapping representations.

(a) Consider an i.i.d. sequence of random variables (Yn)n≥1 that take values in the set

R = {0, 1, ..., k} and have distribution P(Y1 = 0) = 1
2
, and P(Y1 = i) = 1

2k
for i = 1, ..., k.

We define a function f : Zk2 ×R → Zk2 by

f(x, 0) = x and f(x, i) = (x1, ..., xi + 1, ..., xk)

for x ∈ Zk2 and i = 1, ..., k.

(b) Consider two independent sequences of random variables (Un)n≥1 and (Vn)n≥1. The

sequence (Un)n≥1 is an i.i.d. sequence of Bernoulli random variables with uniform distri-

bution on the set {0, 1} (fair coin tosses). The sequence (Vn)n≥1 is an i.i.d. sequence of

random variables with uniform distribution on the set V = {1, ..., k}. We define a function

f : Zk2 × ({0, 1} × V)→ Zk2
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by

f(x, (0, i)) = x and f(x, (1, i)) = (x1, ..., xi + 1, ..., xk)

for x ∈ Zk2 and i ∈ V . �

Definition 11.4.2. Consider a Markov chain (Xn)n≥0 and a stochastic process

(Yn)n≥0. We say (Xn)n≥0 is adapted to (Yn)n≥0 if for all m ≥ 0, Xm is a function

of Y0, Y1, ..., Ym.

Note that a random mapping representation f and (Yn)n≥1 of a Markov chain (Xn)n≥0

represents a special scenario in which (Xn)n≥0 is adapted to another process. In this case,

the Markov chain (Xn)n≥0 is adapted to the process (X0, Y1, Y2, ...).

Definition 11.4.3. Consider a Markov chain (Xn)n≥0 that is adapted to a process

(Yn)n≥0. A randomized stopping time T for (Xn)n≥0 is a random variable taking

values in N0∪{∞} such that for all m ∈ N0, the event {T = m} can be determined

from the values of Y0, Y1, ...., Ym.

Notice that a randomized stopping time is a more general notion than a stopping time

(recall Definition 1.4.1). Indeed, assume T is a stopping time for a Markov chain (Xn)n≥0

which is adapted to a process (Yn)n≥0. Since the indicator random variable 1{T=m}

is a function of X0, X1, ..., Xm, and in turn each random variable Xi is a function of

Y0, Y1, ..., Yi, the event {T = m} is determined by Y0, Y1, ..., Ym. Example 11.4.4 below

gives an example of a randomized stopping time that is not a stopping time for the Markov

chain.

Definition 11.4.4. Let (Xn)n≥0 be an irreducible, positive recurrent Markov chain

with state space S and stationary distribution π. Let T be a randomized stopping

time for (Xn)n≥0. We say T is a strong stationary time if the distribution of

the Markov chain at time T is π, that is, if

P(XT = x) = π(x) for all x ∈ S ,

and if, in addition, XT is independent of T , that is,

P(T = n,XT = x) = P(T = n)π(x) for all x ∈ S, for all n ≥ 0 .

The condition of independence in the above definition will be important (see the proof of

Lemma 11.4.1 below). A randomized stopping time T for which XT ∼ π, but for which

XT and T are not independent, is called a stationary time.
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Example 11.4.4. We return to random walk (Xn)n≥0 on Zk2. The stationary distribution

π is uniform distribution on Zk2. Consider the random mapping representation for the walk

described in Example 11.4.3 (b). The randomized stopping time Tref defined by

Tref = min{m : ∀i ∈ V , ∃j ≤ m, s.t. Vj = i}

is the first time all k coordinates have been “refreshed” (i.e. updated by a uniformly and

independently chosen bit from {0, 1}) at least once. This is the cover time (recall Defini-

tion 8.5.1) for the process (Vn)n≥1. Because of the independence of the U1, U2, ..., V1, V2...

as well as the uniformity of their distributions on their respective state spaces, it should

be clear that at time Tref , all binary k-vectors are equally likely to occur, independently

of the value of Tref . Hence Tref is a strong stationary time for (Xn)n≥0.

We point out that Tref is however not a stopping time for the random walk (Xn)n≥0. Since

the walk has positive holding probability at each step, it is not possible to determine “from

the surface”, i.e. directly from the trajectories of (Xn)n≥0, whether or not Tref has ocurred.

Notice also that for the random mapping representation described in Example 11.4.3 (a),

the (similarly defined) randomized stopping time T defined by

T = min{m : ∀i ∈ {1, ..., k},∃j ≤ m, s.t. Yj = i}

is not a strong stationary time for the random walk on Zk2. �

Lemma 11.4.1. Let Let (Xn)n≥0 be an irreducible, positive recurrent Markov chain

with state space S and stationary distribution π. Let T be a strong stationary time.

Then

P(T ≤ n,Xn = x) = P(T ≤ n)π(x) .

Proof. We have

P(T ≤ n,Xn = x) =
∑
k≤n

P(T = k,Xn = x)

=
∑
k≤n

∑
y∈S

P(T = k,Xk,= y,Xn = x)

=
∑
k≤n

∑
y∈S

P(T = k)π(y)P n−k
yx

=
∑
k≤n

P(T = k)π(x) = P(T ≤ n)π(x) .
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Note that we have used the independence of T and XT in the third line in the above

proof. We are now ready to state an upper bound in terms of the tail distribution of a

strong stationary time T .

Proposition 11.4.2. Consider an irreducible, positive recurrent Markov chain

(Xn)n≥0 with state space S and stationary distribution π. Let Xn ∼ µn. If T

is a strong stationary time, then

‖µn − π‖TV ≤ P(T > n) .

Proof. If µn 6= π, then there exists A ⊆ S such that µn(A) > π(A). Let A be such a set.

We have

P(Xn ∈ A) = P(Xn ∈ A, T ≤ n) + P(Xn ∈ A, T > n)

= P(T ≤ n)π(A) + P(Xn ∈ A, T > n)

≤ π(A) + P(T > n) .

It follows that

‖µn − π‖TV = max
A⊆S
|P(Xn ∈ A)− π(A)| ≤ P(T > n) .

Example 11.4.5 (Top-to-random shuffle). Recall top-to-random shuffle from Section

10.2. We start with a perfectly ordered deck of n cards. At each step, the top card is

taken off and inserted in a uniformly chosen random position. See Figure 11.12. This

process (Xn)n≥0 is a random walk on the symmetric group Sn. The step distribution µ

is uniform distribution on the set of cyclic permutations C = {id, σ2, ..., σn} as defined in

(10.1).

2

n

1
2

n

1

Figure 11.12: Top-to-random shuffle

The random time T= “the first time at which Card n has risen from the bottom to the

top of the deck” is a stopping time for the random walk, since whether or not T has

occurred at time n can be determined directly from the evolution of the random walk up
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to time n. Thus T̃ = T + 1 is a strong stationary time for the random walk: At time T ,

Card n is in top position and any arrangement of Cards 1 through (n− 1) below Card n

is equally likely to occur. After one more time step, Card n has been inserted into the

deck in a uniformly random position, and so at time T̃ any arrangement of the deck is

equally likely to occur, and XT̃ and T̃ are independent.

Note that if Card n is currently in location k of the deck, then the probability that Card

n rises one spot upwards is n−k+1
n

for the next shuffle. So the waiting time for Card n

to rise to location (k − 1) has a geometric distribution with success probability n−k+1
n

.

Clearly,

T̃ = Yn + Yn−1 + · · ·+ Y2 + 1

where Yk ∼ Geom(n−k+1
n

) for 2 ≤ k ≤ n. So T̃ has the same distribution as the waiting

time in the Coupon collector’s problem (see Section B.6). Using Proposition 11.4.2 and

Lemma B.6.1, we get the same result as in Example 11.3.6: After k = n lnn+ cn top-to-

random shuffles of a deck of n cards, we have

‖µk − π‖TV ≤ e−c

which shows that we have for the mixing time tmix
ε ,

tmix
ε ≤ n lnn+ ln(ε−1)n .

�

Example 11.4.6 (Riffle shuffle). We have introduced riffle shuffling (and its time rever-

sal) in Section 10.2. The below Figure 11.13 illustrates one possible step in this process.

2

n

1

4

n

1
2

3

Figure 11.13: Riffle shuffle

Recall that by Lemma 10.1.5, the rate of convergence to stationarity for a random walk

and the rate of convergence for its time reversal are the same with respect to total variation

distance. We will make use of this result here, since working with the time reversal of

riffle shuffling turns out to be easier than working with the original random walk. The

time reversal of riffle shuffling (we will simply call it inverse shuffling) can be viewed as

a type of sorting process. It proceeds in the following way: At each step, we mark each

card with either 0 or 1, according to i.i.d. Bernoulli random variables. We then sort the
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cards according to this marking by bringing all cards marked with 0 to the top of the pile,

leaving their relative order at the time of the marking intact.

Keeping track of the 0 or 1 markings on each card over time produces a binary sequence

on each card. After a finite number of k steps, each card is marked with a binary k-vector,

and these binary k-vectors appear ordered in the deck from top to bottom with respect to

right-to-left lexicographic order. Figure 11.14 gives an illustration for 5 cards and k = 3.

starting deck step 1 step 2 step 3

1 0 1 0

2 1 1 1

3 1 0 1

4 0 1 1

5 0 0 0

deck after 3 inv. shuffles sorted bits

5 (0, 0, 0)

1 (0, 1, 0)

3 (1, 0, 1)

4 (0, 1, 1)

2 (1, 1, 1)

Figure 11.14: Three inverse shuffles for a deck of 5 cards

The random walk (Xn)n≥0 on Sn that is the so-described inverse shuffling is adapted to

an i.i.d. sequence (Yn)n≥1 of random variables that have uniform distribution on the set

of all binary vectors of length n (since the deck has n cards). The time T at which all

n binary vectors of length T are distinct for the first time is a randomized stopping time

for inverse shuffling. In fact, it is a strong stationary time for inverse shuffling: At time

T , because of the independence of the 0–1 Bernoulli random variables, any arrangement

of the deck is equally likely to occur, and XT and T are independent.

Note that once T has occurred, from then onwards all (growing in length) binary vectors

will be distinct at any future time as well.

In order to be able to apply Proposition 11.4.2, we need to estimate P(T > k), that is,

the probability that after k inverse shuffles not all binary k-vectors are distinct. We have

2k possible distinct rows. Each is equally likely to have occurred. So

P(T > k) = 1−
n−1∏
j=0

2k − j
2k

. (11.29)

We will now estimate for which values k (as a function of n) the right-hand side of (11.29)

becomes small. Write

n−1∏
j=0

2k − j
2k

= exp

(
n−1∑
j=0

ln

(
1− j

2k

))
.

For small x, we can use 1− x ≈ e−x. From this we have
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n−1∏
j=0

2k − j
2k

≈ exp

(
−

n−1∑
j=0

j

2k

)
≈ exp(− n2

2 · 2k
) . (11.30)

If we take k = 2 log2 n on the right-hand side of (11.30), we get

exp(− n2

2 · 22 log2 n
) = e−1/2 ≈ 0.607 .

We can improve things by taking k = 2 log2 n + c for some positive constant c instead.

This yields

exp(− n2

2 · 22 log2 n+c
) = e−1/21+c ,

which for c = 3 gives

e−1/16 ≈ 0.94 .

Hence

P(T > k) ≈ 0.06 ,

for k = 2 log2 n+ 3 (and of course an even smaller value for k = 2 log2 n+ c with c > 3).

Applying this estimate for the tail probability of T to Proposition 11.4.2, we conclude

that after k = 2 log2 n+ 3 inverse riffle shuffles (and hence also riffle shuffles) the deck is

reasonably close to random.

We will quote a result that improves on this estimate in the following section. �

11.5 The Cut-off phenomenon

In 1981, Diaconis and Shashahani [9] observed an interesting phenomenon while studying

random transpositions, a type of card shuffling modeled as random walk on the symmetric

group Sn: For this random walk, convergence to stationarity does not happen gradually,

as one might expect, but rather abruptly around a certain cut-off point. They proved that,

within a relatively small time interval around that cut-off point, total variation distance

to uniformity drops from near 1 to near 0. Random transpositions shuffling proceeds

in the following way: At at each step, two cards are chosen uniformly at random from

the deck and their position is swapped. Diaconis and Shahshahani [9] proved that for

random transpositions with a deck on n cards, the sharp drop in total variation distance

happens within a relatively small time interval around time k = 1
2
n lnn . Figure 11.15

below illustrates this type of convergence behavior.
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1

time k

‖µk − π‖TV

no cut-off

1

time kcut-off

‖µk − π‖TV

Figure 11.15: No cut-off versus a cut-off

Since this result was first published, the cut-off phenomenon has been proved (or dis-

proved) for a number of Markov chains. This is an active area of research. The following

example describes another random walk for which the cut-off phenomenon occurs.

Example 11.5.1 (Cut-off for riffle shuffle). We introduced riffle shuffling in Section

10.2 (for an illustration, see Figure 11.16) and found an upper bound for its rate of conver-

gence to stationarity in Example 11.4.6. Here we quote a precise result that demonstrates

the cut-off phenomenon for this random walk.

2

n

1

4

n

1
2

3

Figure 11.16: Riffle shuffling

This model was first analyzed by Aldous in [1] who found the asymptotic mixing time,

and later by Bayer and Diaconis in [5] who found an exact formula for its distance to

stationary which sharpened the result from [1]. The below table in Figure 11.17 gives the

exact values of total variation distance for a deck of n = 52 cards. It is taken from [5].

k 1 · · · 4 5 6 7 8 9 10

‖µk − π‖TV 1 · · · 1 0.924 0.614 0.334 0.167 0.085 0.043

Figure 11.17: Total variation distance for riffle shuffling for a deck of 52 cards

A plot of this data in Figure 11.18 more clearly displays the sharp drop-off.

In [5], Bayer and Diaconis give a precise formula for for total variation distance to sta-

tionarity for a deck of n cards. They show that, for large n, for a number of

k =
3

2
log2 n+ c
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Figure 11.18: Plot of the data in Figure 11.17

shuffles, where c is a positive or negative constant,

‖µk − π‖TV = 1− 2Φ

(
−2−c

4
√

3

)
+O

(
1

n1/4

)
. (11.31)

Here

Φ(t) =
1√
2π

∫ t

−∞
e−x

2/2 dx

is the cumulative distribution function of a standard normal random variable. We can

verify from (11.31) that for large n, if we choose a sufficiently large c, then the expression

in (11.31) will be near 0. And if we choose a negative c that is sufficiently large in absolute

value, the expression in (11.31) will be close to 1. This shows that a number of 3
2

log2 n+c

shuffles are necessary and sufficient to mix the deck of n cards. See Figure 11.19.

1

time k3
2 log2 n

‖µk − π‖TV

Figure 11.19: Cut-off at k = 3
2

log2 n steps for riffle shuffling a deck of n cards

We point out that for most examples, a precise formula for total variation distance, such

as in (11.31), is not available. �
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We now give a precise mathematical definition of the cut-off phenomenon. For this,

consider a natural sequence of Markov chains (X
(n)
k )k≥0 with n ≥ 1 for which the size

of the state space increases in a natural way, and for which the transition probabilities

for each of the growing state spaces can be defined in an analogous way. For example,

consider riffle shuffling a deck of n cards. For a given n, the size of the state space is

|Sn| = n!. With growing n, the size of the state space grows accordingly. We regard n as

the size parameter for the state space Sn. The transition probabilities for riffle shuffles are

defined in an analogous way for any n. Our viewpoint is a simultaneous time and space

asymptotic: We want to understand the mixing time for a Markov chain, such as for

riffle shuffling, as a function of the size parameter n of the state space.

Notation: For such a sequence of Markov chains (X
(n)
k )k≥0, we denote the stationary

distribution for the Markov chain with size parameter n by π(n). And we denote the

distribution at time k of the Markov chain with size parameter n by µ
(n)
k .

Definition 11.5.1. Consider a sequence of Markov chains (X
(n)
k )k≥0 whose state

spaces have size parameter n. Let t(n) and w(n) be two nonnegative functions with

lim
n→∞

t(n) =∞ and lim
n→∞

w(n)

t(n)
= 0 .

We say the Markov chain has a cut-off at t(n) if

lim
n→∞

‖µ(n)
t(n)+cw(n) − π

(n)‖TV = f(c)

where f(c) is a function with

lim
c→−∞

f(c) = 1 and lim
c→∞

f(c) = 0 .

The function w(n) is called the window for the cut-off. In “little-oh” notation, we have

w(n) = o(t(n)). For the above example of riffle shuffling of a deck of n cards, the cut-off

is at t(n) = 3
2

log2 n, and the window for the cut-off is w(n) = 1.

Phenomenon reveals itself in a joint time and space asymptotic.

The following example proves a cut-off phenomenon for top-to-random shuffling.

Example 11.5.2 (Cut-off for the top-to-random shuffle). Recall Examples 11.3.6

and 11.4.5. Both show that for k = n lnn+ cn, for top-to-random shuffles of n cards, we

have

‖µ(n)
k − π

(n)‖TV ≤ e−c . (11.32)
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For sufficiently large c, the value e−c will be close to 0. In order to prove a cut-off

phenomenon, we also need to prove a matching lower bound for t(n) = n lnn and w(n) =

n.

A matching lower bound for top-to-random shuffle.

In order to find a lower bound for total variation distance at time k, a successful approach

can be to find a “bad” set A, in the sense that |P(X
(n)
k ∈ A)−π(n)(A)| is still fairly large,

and so total variation distance will also be still large. We will construct such a set. Let

A = {σ ∈ Sn : Card n is above Card (n− 1)} .

Note that π(n)(A) = 1
2
. We will show that for k = n lnn− 3n,

P(X
(n)
k ∈ A) <

1

4
,

and thus

‖µ(n)
k − π

(n)‖TV >
1

4
.

Recall that initially the deck is in perfect order. So for event A to happen, Card (n− 1)

must first rise to the top and then be inserted back into the deck somewhere below Card

n. It follows that

P(X
(n)
k ∈ A) ≤ P(T < k)

where T is the stopping time “Card (n−1) has risen to the top of the pile”. We will show

that P(T < k) < 1
4
. Towards this end, we write

T =
n−1∑
j=2

Tj

where Tj is the random time it takes for Card (n − 1) to rise from spot (n − j + 1) to

spot (n − j) in the pile. Note that the random variable Tj has a geometric distribution

with success parameter pj = j
n

(since the current top card must be inserted below Card

(n− 1) for Card (n− 1) to rise by one spot).

Recall that for a geometric random variable X ∼ Geom(p), we have E(X) = 1
p

and

Var(X) = 1−p
p2

. So we have

E(Tj) =
n

j
and Var(Tj) ≤

n2

j2
for j = 2, 3, ...n− 1 .

We get

E(T ) =
n−1∑
j=2

E(Tj) = n
n−1∑
j=2

1

j
≥ n(lnn− 1) , (11.33)
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where for the last inequality we have used the fact lnn ≤
n−1∑
j=1

1

j
. For an estimate for

Var(T ), recall (B.4). From it we get

Var(T ) =
n−1∑
j=2

Var(Tj) ≤ n2

∞∑
j=2

1

j2
≤ 2

3
n2 .

Recall that our goal is to show that P(k > T ) < 1
4
. Let k = n lnn− 3n. This yields

P(n lnn− 3n > T ) = P((n lnn− n)− T − 2n > 0)

≤ P(E(T )− T − 2n > 0) = P(E(T )− T > 2n)

where the above inequality is due to (11.33). Applying Chebychev’s Inequality to the

random variable T and the probability P(E(T )− T > 2n), we get

P(E(T )− T > 2n) ≤ Var(T )

4n2
≤

2
3
n2

4n2
<

1

4
.

Hence, for k = n lnn− 3n, we get

P(X
(n)
k ∈ A) <

1

4
,

and consequently

|P (X
(n)
k ∈ A)− π(n)(A)| > 1

2
− 1

4
=

1

4
.

This implies that for k = n lnn− 3n,

‖µ(n)
k − π

(n)‖TV >
1

4
, (11.34)

and so total variation distance to stationarity is still fairly large for k = n lnn− 3n steps.

See Figure 11.20 for an illustration. Together, inequalities (11.32) and (11.34) prove a

cut-off phenomenon at t(n) = n lnn with window w(n) = n. �

Example 11.5.3 (No cut-off for random walk on the discrete N-cycle). Recall

Section 11.2.3 where we have shown that for simple random walk on ZN , we have

‖µ(N)
k − π(N)‖TV < 0.037

for k ≥ N2. It is known (see [7], [8]) that for large N ,

‖µ(N)
k − π(N)‖TV ≈ f

(
k

N2

)
where f is a positive, decreasing, and continuous function with f(0) = 1 and lim

x→∞
f(x) = 0.

This shows that the decay of total variation distance for simple random walk on ZN
happens gradually at around k = N2 steps, without a sharp cut-off. See Figure 11.21. �



Exercises 345

1

time kn lnn

n lnn + cnn lnn− cn

‖µ(n)
k − π(n)‖TV

Figure 11.20: Cut-off at k = n lnn steps for top-to-random shuffling a deck of n cards

1

time k

‖µ(N)
k − π(N)‖TV

N2

Figure 11.21: No sharp cut-off for total variation distance for random walk on ZN

Exercises

Exercise 11.1. Consider a state space S and the space P of all probability distributions

on S. Show that the function d : P × P → R defined by

d(µ, ν) = ‖µ− ν‖TV

for all µ, ν ∈ P defines a metric on P .

Exercise 11.2. Consider an ergodic Markov chain (Xn)n≥0 on state space S with sta-

tionary distribution π. Assume (Xn)n≥0 is lumpable (see Section 1.7) with respect to

a partition A = {A1, A2, ...} of S. We denote the lumped chain by (〈Xn〉)n≥0 and its

stationary distribution on A by π̂. Show that for all n ≥ 1,

‖µ̂n − π̂‖TV ≤ ‖µn − π‖TV

where µn and µ̂n denote the distributions of the processes (Xn)n≥0 and (〈Xn〉)n≥0 at time

n, respectively.

Exercise 11.3. Consider the Ehrenfest chain (Yn)n≥0 for N particles and its lift (Xn)n≥0

to simple random walk on the hypercube ZN2 . More precisely, (Yn)n≥0 is the lumped
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version of (Xn)n≥0 under Hamming weight (recall Example 1.7.4). Assume Y0 = 0 and let

Yn ∼ µ̂n and Xn ∼ µn for n ≥ 0. Show that the total variation distance to stationarity is

the same for the Ehrenfest chain and for its lift to the hypercube, that is, show that

‖µ̂n − Bin(N,
1

2
)‖TV = ‖µn − Unif(ZN2 )‖TV .

Exercise 11.4. Consider a chain graph G with N vertices (see Figure 11.22) and simple

random walk on this graph. Find the eigenvalues and their multiplicities for this random

walk. (Hint: View the random walk as a lumped version of another Markov chain. Recall

Example 1.7.5.)

1 N

Figure 11.22

Exercise 11.5. Assume S is a countably infinite state space. Let µn, n ≥ 0, be a sequence

of probability measures on S as well as π be a probability measures on S. Prove that

lim
n→∞

‖µn − π‖TV = 0 ⇐⇒ lim
n→∞

µn(x) = π(x) ∀x ∈ S .

Exercise 11.6. Let S be a finite state space and P the transition matrix for an irreducible,

aperiodic Markov chain on S. Let π be the stationary distribution for the chain. Consider

the following distributions µ
(x)
n on S: For n ≥ 0 and x ∈ S, let µ

(x)
n denote the distribution

of X
(x)
n where (X

(x)
n )n≥0 is the P-Markov chain starting in state x. Furthermore, for

n ≥ 0, µn is the distribution of Xn where (Xn)n≥0 is the P-Markov chain starting in

initial distribution µ0. Prove that

‖µn − π‖TV ≤ max
x∈S
‖µ(x)

n − π‖TV .

Exercise 11.7. Let S be a discrete space. Proposition 11.3.2 states that for any two

distributions µ and ν on S, there exists an optimal coupling (X, Y ) in the sense that

P(X 6= X) = ‖µ− ν‖TV .

Let B = {x ∈ S : µ(x) > ν(x)}. Consider the following probabilities:

P((X, Y ) = (x, x)) = min{π(x), ν(x)} for x ∈ S

P((X, Y ) = (x, y)) =
(µ(x)− ν(x))(ν(y)− µ(y))

‖µ− ν‖TV
for x ∈ B and y ∈ Bc

P((X, Y ) = (x, y)) = 0 otherwise .

Show that the given probabilities define a coupling of µ and ν and that this coupling is

optimal.
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Exercise 11.8. Let S = {0, 1, 2}. Consider the two distributions µ ∼ Unif(S) and ν

defined by ν(0) = ν(1) = 1
2

and ν(2) = 0 on S. Give the joint distribution for an optimal

coupling of µ and ν.

Exercise 11.9. Consider an ergodic Markov chain (Xn)n≥0 with stationary distribution

π. Fix ε > 0, and recall the definition of the mixing time tmix
ε (Definition 11.1.2). Using

the same notation as in Theorem 11.3.5, show that

tmix
ε ≤ ε−1 max

x,y∈S
E(x,y)(Tcouple) .

Exercise 11.10. Verify that the probabilities given in Example 11.3.5 define a coupling

for two P-chains (Xn)n≥0 and (Yn)n≥0.

Exercise 11.11. Give an example of a coupling of two Markov chains for which Tcouple

is not a finite random variable, that is, for which P(Tcouple <∞) < 1.

Exercise 11.12. Consider an ergodic Markov chain (Xn)n≥0 with transition matrix P

on state space S. Let π be its unique stationary distribution and let µn denote the

distribution of Xn for n ≥ 1. Use a coupling argument to prove convergence with respect

to total variation distance. That is, prove that for any initial distribution µ0,

‖µn − π‖TV
n→∞−−−−→ 0 .

(Hint: Couple (Xn)n≥0 with a second P-chain (Yn)n≥0 that starts in π. The key part is

to prove that P(Tcouple <∞) = 1.)

Exercise 11.13. Consider simple symmetric random walk on theN -cycle ZN (the integers

mod N) without holding probability. Let (Xn)n≥0 and (Yn)n≥0 be two such random walks

with (Xn)n≥0 starting in x ∈ ZN and (Yn)n≥0 starting in y ∈ ZN . We assume x 6=
y. Construct three distinct couplings (Xn, Yn)n≥0 for which, in each case, the source of

randomness is a sequence of independent rolls of a 6-sided fair die.

Exercise 11.14. Consider simple biased random walk on Z20 (the integers mod 20)

with transition probabilities Px,x+1 = 2
3

and Px,x−1 = 1
3
. Let (Xn)n≥0 be a copy of the

random walk that starts in state 1, and let (Yn)n≥0 be a copy of the random walk that

starts in state 9.

(a) Construct a bivariate process (Xn, Yn)n≥0 in the following way: At each time step,

roll a fair 6-sided die. Assuming the current state is (x, y), if the die shows 1 or 2,

the process moves to (x + 1, y − 1). If the die shows 3 or 4, the process moves to

(x+ 1, y+ 1). And if the die shows 5 or 6, the process moves to (x− 1, y+ 1). Show

that this is a coupling for (Xn)n≥0 and (Yn)n≥0.
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(b) For the coupling from part (a), compute E(Tcouple), that is, the expected time until

the two random walks hit the same state for the first time.

Exercise 11.15. Consider a finite-state Markov chain (Xn)n≥0 on state space S with

transition matrix P. Construct a random matrix representation for (Xn)n≥0 using an i.i.d.

sequence (Un)n≥1 of random variables with uniform distribution on the unit interval.

Exercise 11.16. Recall lazy random walk on the hypercube Zk2 and its strong stationary

time Tref that we have introduced in Example 11.4.4. Let c > 0.

(a) Use the results from Section 11.4 to show that for this walk, after n = k ln k + ck

steps, the distance to stationarity (with respect to total variation distance) is at

most e−c. (Hint: The result from Appendix B.6 may be useful.)

(b) Use the result from part (a) to show that for lazy random walk on the hypercube

Zk2,

tmix
ε ≤ k ln k + ln(ε−1)k .



Appendix A

A.1 Miscellaneous

Binomial Identities. We assume all integers are nonnegative.

n∑
k=0

(
n

k

)
= 2n

Recursion: (
n+ 1

k + 1

)
=

(
n

k

)
+

(
n

k + 1

)
Diagonal sums for 0 ≤ k ≤ n:(

k

k

)
+

(
k + 1

k

)
+

(
k + 2

k

)
+ · · ·+

(
n

k

)
=

(
n+ 1

k + 1

)
Vandermonde’s Identity:

k∑
j=0

(
m

j

)(
n

k − j

)
=

(
m+ n

k

)

Stirling’s approximation.

Stirlings approximation for factorials states

lim
n→∞

n!

nne−n
√

2πn
= 1 .

For large n ∈ N, we can use the approximation

n! ≈ nne−n
√

2πn . (A.1)
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A.2 Bipartite graphs

Definition A.2.1. Let G(V,E) be an undirected graph. (a) We call the graph

bipartite if there exists a partition V = V1 ∪ V2 such that for any two vertices

v, w ∈ V ,

{v, w} ∈ E ⇐⇒ v ∈ V1 and w ∈ V2 (or vice versa) .

(b) We call a sequence of vertices v0 v1 · · · vn−1 vn a path of length n if

• vi 6= vj for i 6= j and 0 ≤ i, j ≤ n, and

• {vi, vi+1} ∈ E for 0 ≤ i ≤ n− 1.

(c) We call a sequence of vertices v0 v1 · · · vn−1 v0 a cycle of length n if n ≥ 3 and

• v0 v1 · · · vn−1 is a path of length (n− 1) and {vn−1, v0} ∈ E.

Proposition A.2.1 (Bipartite graphs). Let G(V,E) be a connected graph. G(V,E)

is bipartite if and only if it does not contain an odd-length cycle.

Proof. AssumeG(V,E) is bipartite with V = V1∪V2. Assume v0 ∈ V1, and let v0 v1 · · · vn−1 v0

be a cycle. Since the graph is bipartite, it must be that v0, v2, v4, ..., vn−2 ∈ V1 and that

n− 2 is even. It follows that n is also even, and hence the length of the cycle is even.

Conversely, assume that G(V,E) does not contain an odd-length cycle. For any two

vertices v and w, let d(v, w) be the distance of v and w defined as the minimum path

length among all possible paths from v to w. If there is no path from v to w, we set

d(v, w) = ∞. Now fix a vertex v ∈ V . Consider the set W = {w ∈ V : d(v, w) is odd}.
Clearly, W is not empty since the graph is connected and so there is at least one edge

emanating from v. If W contains more than one vertex, take two distinct w1, w2 ∈ W .

We have two (minimal-length) paths v s1 s2 · · · sk−1w1 and v u1 u2 · · ·ul−1w2. Let k̃ and l̃

be the largest indices for which sk̃ = ul̃. Since both paths are of minimal length, it must

follow that k̃ = l̃. Now assume that {w1, w2} ∈ E. But then the resulting cycle

sk̃ sk̃+1 · · ·w1w2 ul−1 · · ·ul̃

is of odd length which contradicts our assumption for the graph. Hence we must dismiss

the assumption that there exist two vertices w1, w2 ∈ W that are joined by an edge.

The same argument can be applied to the set W c = V \W , and we conclude that no two

vertices r1, r2 ∈ W c are joined by and edge. It follows that the graph G(V,E) is bipartite

for the partition V = W ∪W c.
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A.3 Schur’s theorem

Theorem A.3.1 (Schur’s theorem). Let C ⊂ N such that gcd(C) = c. Then there

exists an integer N (depending on the set C) such that for all n ≥ N we can write

c n as a linear combination of elements of C with nonnegative integer coefficients.

Proof. Note that it suffices to prove the theorem for the case gcd(C) = 1. For if gcd(C) =

c > 1, we can factor out c from each element in C to end up with a set C ′ whose elements

are relative prime. The result for C ′ then implies the statement for C by multiplication

of each linear combination by the factor c.

Assume gcd(C) = 1. Let L(C) denote the set of all values that can be computed as a linear

combination of elements in C with nonnegative integer coefficients. We first show that

there exist two consecutive positive integers m,m + 1 ∈ L(C). Assume this is not true.

So there exists d ≥ 2 such that |m1 −m2| ≥ d for all m1,m2 ∈ L(C), and furthermore,

there exist m,m + d ∈ L(C). Since gcd(C) = 1, there exists at least one integer n ∈ C
for which d is not a divisor. Hence we can write

n = k d+ r

for some k ≥ 0 and for a remainder 1 ≤ r < d. Clearly, both (k + 1)(m + d) and

n+ (k + 1)m are elements of L(C). However their difference is

(k + 1)(m+ d)− (n+ (k + 1)m) = d− r < d ,

which contradicts the assumption that d is the smallest difference in absolute value be-

tween two elements in L(C). It follows that L(C) must contain two consecutive positive

integers m and m+ 1.

We now claim that the statement of the theorem follows for N = m2. Indeed, assume

n ≥ m2. We can write

n−m2 = lm+ s

for some l ≥ 0 and for a remainder 0 ≤ s < m. Clearly, both s(m+ 1) and (m− s+ l)m

are elements of L(C), and therefore their sum

s(m+ 1) + (m− s+ l)m = n

is also in L(C).
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A.4 Iterated double series

Definition A.4.1. • A double sequence (aij)i,j≥1 of real or complex numbers is

a function f : N× N→ R (or C) where we set f(i, j) = aij.

• Let (aij)i,j≥1 be a double sequence. An iterated series is an expression of the

form
∞∑
i=1

∞∑
j=1

aij or
∞∑
j=1

∞∑
i=1

aij .

• We say the iterated series
∑∞

i=1

∑∞
j=1 aij converges to A ∈ R (or C) if for

each j ≥ 1,
∞∑
i=1

aij = Aj

for some Aj ∈ R (or C), and

∞∑
j=1

Aj = A .

Theorem A.4.1 (Fubini’s theorem for series). Consider a (real or complex) double

sequence (aij)i,j≥1. If the iterated series

∞∑
i=1

∞∑
j=1

|aij|

converges, then both
∑∞

i=1

∑∞
j=1 aij and

∑∞
j=1

∑∞
i=1 aij converge and

∞∑
i=1

∞∑
j=1

aij =
∞∑
j=1

∞∑
i=1

aij .

For a proof see [31] (Theorem 8.3).

Corollary A.4.2. Let (aij)i,j≥1 be a double sequence of nonnegative real numbers.

Then
∞∑
i=1

∞∑
j=1

aij =
∞∑
j=1

∞∑
i=1

aij

(both sides may be infinite).
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A (finite or infinite) stochastic matrix P is a square matrix

P =


P00 P01 P02 · · ·
P10 P11 · · · · · ·

...
...

...
...


for which Pij ≥ 0 for all i, j ≥ 0 and

∑
j≥0

Pij = 1 for all i ≥ 0.

Corollary A.4.3. The product of two (finite and of equal dimension, or infinite)

stochastic matrices P and P̃ is a stochastic matrix.

Proof. The (i, j)th entry of the matrix product PP̃ is

(PP̃)ij =
∑
k≥0

PikP̃kj ≥ 0 .

For finite matrices P and P̃, it is clear that
∑

j≥0

∑
k≥0 PikP̃kj = 1 since changing the

order of summation is not an issue. Assume both matrices are infinite matrices. Since we

have ∑
k≥0

∑
j≥0

PikP̃kj = 1 ,

we can apply Theorem A.4.1 and get for the row sum of the ith row∑
j≥0

(PP̃)ij =
∑
j≥0

∑
k≥0

PikP̃kj = 1 .

Corollary A.4.4. Matrix multiplication for infinite stochastic matrices is associa-

tive.

Proof. Let P, P̃, and P′ be three infinite stochastic matrices. We need to show that

[(PP̃)P′]ij = [P(P̃P′)]ij. Since

[(PP̃)P′]ij =
∑
n≥0

(∑
k≥0

PikP̃kn

)
P ′nj =

∑
n≥0

∑
k≥0

PikP̃knP
′
nj

is a convergent double sum (it is the (i, j)th entry of a stochastic matrix) and all terms

in the sum are nonnegative, we can apply Theorem A.4.1 and conclude that∑
n≥0

∑
k≥0

PikP̃knP
′
nj =

∑
k≥0

∑
n≥0

PikP̃knP
′
nj =

∑
k≥0

Pik

(∑
n≥0

P̃knP
′
nj

)
= [P(P̃P′)]ij
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from which we get

[(PP̃)P′]ij = [P(P̃P′)]ij .

A.5 Infinite products

Definition A.5.1. Let (cj)j≥1 be a sequence of positive constants. Consider the

sequence of successive products (
n∏
j=1

cj)n≥1. We say the infinite product
∞∏
j=1

cj exists

if the sequence of successive products converges to a finite positive number:

0 < lim
n→∞

n∏
j=1

cj =
∞∏
j=1

cj <∞ .

Lemma A.5.1. Let cj = 1 + εj (resp. cj = 1 − εj) with 0 ≤ εj < 1 for all j ≥ 1.

Then
∞∏
j=1

cj =
∞∏
j=1

(1 + εj) (resp.
∞∏
j=1

(1− εj)) exists if an only if
∞∑
j=1

εj converges.

Proof. First, recall the Limit Comparison Test for positive infinite series: Let
∑∞

n=1 an

and
∑∞

n=1 bn be two infinite series with an, bn > 0 for all n ≥ 1. If

lim
n→∞

an
bn

= c

with 0 < c <∞, then either both series diverge or both series converge.

Note that the infinite product
∞∏
j=1

(1 + εj) converges if and only if
∞∑
j=1

ln(1 + εj) converges

to a finite number. Furthermore, εj = 0 ⇐⇒ ln(1 + εj) = 0. Assume limj→∞ εj = 0 and

consider the subsequence ε′k of strictly positive values. Since

lim
k→∞

ln(1 + ε′k)

ε′k
= 1 ,

by the Limit Comparison Test,
∞∏
j=1

(1 + εj) converges if and only if
∞∑
j=1

εj converges.

For the case
∞∏
j=1

(1− εj) a similar argument applies. We can apply the Limit Comparison

Test to the series (−1)
∞∑
j=1

ln(1− εj) and
∞∑
j=1

εj.
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A.6 The Perron–Frobenius Theorem

This is a classical theorem from Linear Algebra. It has several parts. Here we quote the

parts that are most relevant for our purposes. For a reference see [32] or [18].

Theorem A.6.1 (Perron–Frobenius, Part I). Let P be strictly positive (n × n)-

matrix. Then the following statements hold.

(a) There exists a positive real number λ∗, called the Perron–Frobenius eigenvalue,

such that λ∗ is an eigenvalue of P, and for all other eigenvalues λ of P we

have

|λ| < λ∗ .

(b) The Perron–Frobenius eigenvalue λ∗ satisfies

min
i

∑
j

Pi,j ≤ λ∗ ≤ max
i

∑
j

Pi,j .

(c) The algebraic multiplicity, and therefore also the geometric multiplicity, of λ∗

is one. In particular, the eigenspace corresponding to the Perron–Frobenius

eigenvalue λ∗ is one-dimensional.

(d) There exists a left eigenvector v corresponding to eigenvalue λ∗ for which

all entries vj, 1 ≤ j ≤ n, are strictly positive. There also exists a right

eigenvector wt corresponding to λ∗ for which all entries wj, 1 ≤ j ≤ n, are

strictly positive.

(e) Let v and wt be the positive left and right eigenvectors from part (d). Under

the normalization
∑n

j=1wj = 1 and
∑n

j=1 vjwj = 1, we have

1

(λ∗)k
Pk k→∞−−−−→ wtv .

(f) The Perron–Frobenius eigenvalue λ∗ is the only eigenvalue for which there

exist strictly positive right and left eigenvectors.
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Definition A.6.1. A real (n×n)-matrix P is called irreducible if P is nonnegative

and for any pair of indices i, j, there exists k > 0 such that

(Pk)i,j > 0 .

Definition A.6.2. Let P be a (nonnegative) irreducible (n×n)-matrix. The matrix

P is called periodic, or cyclic, with period c > 1 if for a k ∈ {1, ..., n} (and hence

for all k ∈ {1, ..., n})
c = gcd{m : (Pm)k,k > 0} .

If c = gcd{m : (Pm)k,k > 0} = 1, the matrix P is called aperiodic, or acyclic.

Theorem A.6.2 (Perron–Frobenius, Part II). Let P be a (nonnegative) irreducible

(n× n)-matrix. Then the following statements hold.

(a) There exists a positive real number λ∗, called the Perron–Frobenius eigenvalue,

such that λ∗ is an eigenvalue of P, and for all other eigenvalues λ of P we

have

|λ| ≤ λ∗ .

(b) The Perron–Frobenius eigenvalue λ∗ satisfies

min
i

∑
j

Pi,j ≤ λ∗ ≤ max
i

∑
j

Pi,j .

(c) The algebraic, and therefore also the geometric multiplicity of λ∗ is one.

(d) There exists a left eigenvector v corresponding to eigenvalue λ∗ for which

all entries vj, 1 ≤ j ≤ n, are strictly positive. There also exists a right

eigenvector wt corresponding to λ∗ for which all entries wj, 1 ≤ j ≤ n, are

strictly positive.

(e) If P is periodic with period c > 1, then P has precisely c distinct eigenvalues

λ of modulus |λ| = λ∗. These c eigenvalues are

e2πik/cλ∗ for k = 0, 1, ..., c− 1 . (A.2)

Each of the eigenvalues in (A.2) has algebraic (and hence also geometric)

multiplicity one.



Appendix B

B.1 Sigma algebras, Probability spaces

Definition B.1.1. Let Ω be a set. A collection F of subsets of Ω is called a σ-

algebra (or σ-field) if the following three properties hold:

(a) Ω ∈ F
(b) If E ∈ F , then Ec ∈ F .

(c) F is closed under countable union, that is, if Ek ∈ F for k ≥ 1, then⋃
k≥1

Ek ∈ F .

The fundamental notion is that of a probability space:

Definition B.1.2 (Probability space). A triple (Ω,F ,P) is called a probability space

if

(a) Ω is a set (the set of all possible outcomes),

(b) F is a sigma-algebra of Ω,

(c) P is a probability measure, that is, a function P : F → [0, 1] for which

• P(Ω) = 1,
• P has the σ-additivity property: If Ek, k ≥ 1, are pairwise disjoint sets

of F , then

P

(⋃
k≥1

Ek

)
=
∑
k≥1

P(Ek) .

The elements of F are called events. They are exactly those collections of outcomes (i.e.,

subsets of Ω) for which a probability is defined. If Ω is discrete, we usually take F to be

the power set (i.e., the set of all subsets) of Ω. In this case, any subset of Ω has a well

357
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defined probability assigned to it. If Ω is an uncountable set, then F usually is a strict

subset of the power set of Ω, and so for some subsets of Ω there is no defined probability.

Definition B.1.3. Let (Ω,F ,P) be a probability space. We say an event B ∈ F
happens almost surely (a.s.) if P(B) = 1. Equivalently, B happens almost surely

if P(Bc) = 0.

The following continuity property of P is a consequence of σ-additivity:

Lemma B.1.1 (Continuity of probability). Let (Ω,F ,P) be a probability space and

Ek, k ≥ 1, a sequence of events.

(a) If E1 ⊆ E2 ⊆ · · · , then

lim
k→∞

↑ P(Ek) = P

(⋃
k≥1

Ek

)
.

(b) If E1 ⊇ E2 ⊇ · · · , then

lim
k→∞

↓ P(Ek) = P

(⋂
k≥1

Ek

)
.

Proof. (a) Let E0 = ∅ and consider the events Ak = Ek −Ek−1 for k ≥ 1. The events Ak

are pairwise disjoint. Clearly, ⋃
k≥1

Ek =
⋃
k≥1

Ak ,

and so,

P

(⋃
k≥1

Ek

)
=
∑
k≥1

P(Ak) =
∑
k≥1

(P(Ek)− P(Ek−1)) .

But ∑
k≥1

(P(Ek)− P(Ek−1)) = lim
n→∞

n∑
k=1

(P(Ek)− P(Ek−1)) = lim
n→∞

↑ P(En) ,

and thus

P

(⋃
k≥1

Ek

)
= lim

n→∞
↑ P(En) .

(b) To prove (b), we apply the result from part (a) to the sequence of events Ec
k, k ≥ 1,

for which then Ec
1 ⊆ Ec

2 ⊆ · · · holds. We omit the details.
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Let us now assume that we have n probability spaces (Ω1,F1,P1), ..., (Ωn,Fn,Pn). We can

form the direct product Ω = Ω1×· · ·×Ωn which consists of all points ω = (ω1, ..., ωn) with

ωi ∈ Ωi for 1 ≤ i ≤ n. We then consider the direct product σ-algebra F = F1 ⊗ · · · ⊗ Fn
on Ω which is the σ-algebra that consists of all sets of the form

F = F1 × · · · × Fn with Fi ∈ Fi for 1 ≤ i ≤ n .

In order to make (Ω,F) into a probability space, we need to define a probability P on

F . How we do this, will depend on the particular dependency structure we would like P
(the joint probability distribution on the product space for which, a priori, we only know

the marginal probability distributions for each component) to represent. The simplest

probability measure P on product space Ω = Ω1× · · · ×Ωn is product measure defined

by

P(F ) = P1(F1)P2(F2) · · ·Pn(Fn) for all F ∈ F

where F = F1 × F2 × · · · × Fn. Product measure models independence. If Ωi for

1 ≤ i ≤ n are discrete sets and we write pi(xi) = Pi(xi), we have

P(F ) =
∑
xi∈Fi
1≤i≤n

p1(x1) p2(x2) · · · pn(xn) .

Example B.1.1. Consider n i.i.d. Bernoulli trials (coin flips) (X1, ..., Xn) with P(X1 =

1) = p and P(X1 = 0) = 1 − p. We can associate with each coin flip Xi a probability

space (Ωi,Fi,Pi) where Ωi = {0, 1} and Fi = {∅, {1}, {0}, {0, 1}}. The direct product

space Ω = Ω1 × · · · × Ωn consists of all binary vectors (with entries 0 or 1) of length n.

We have |Ω| = 2n. For a specific outcome ω = (ω1, ...., ωn) with ωi ∈ {0, 1} we have

P(ω) = p
∑n
i=1 ωi(1− p)n−

∑n
i=1 ωi .

�

Definition B.1.4. Let (Ω,F ,P) be a probability space and a discrete set S. A

discrete random variable X is a map

X : Ω→ S

such that X−1({s}) ∈ F for all s ∈ S. The distribution (law) of X is a probability

measure µ on S. It is the so-called pushforward measure to S of the probability

measure P on Ω under the map X, that is,

µ = P ◦X−1 .
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B.2 Expectation, Basic inequalities

Expectation of a nonnegative integer-valued random variable:

Let X be a nonnegative integer-valued random variable. Then

E(X) =
∞∑
n≥1

P(X ≥ n) . (B.1)

Markov’s Inequality:

Let X be a random variable and c > 0. Then

P(|X| ≥ c) ≤ E(|X|)
c

. (Markov′s inequality)

As a corollary, for higher moments,

P(|X| ≥ c) ≤ E(|X|n)

cn
for n ≥ 1 .

Assume E(|X|) <∞. Applying Markov’s Inequality to the random variable (X−E(X))2,

we get Chebychev’s Inequality:

Let X be a random variable with E(|X|) <∞. Then

P(|X − E(X)| ≥ c) ≤ Var(X)

c2
. (Chebychev′s Inequality)

Similar inequalities hold for higher central moments.
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B.3 Properties of Conditional Expectation

Here we collect some main properties of conditional expectation. Assume all random

variables are defined on the same probability space, and all expectations exist. Let a, b, c ∈
R and g : R→ R.

The following properties hold for conditional expectation. Note that

statements (b)-(j) are meant to hold with probability 1.

(a) E(Y |X1, ..., Xk) is a function of X1, ..., Xk.

(b) E(c |X) = c.

(c) (Linearity property) E(aX1 + bX2 |Y ) = aE(X1 |Y ) + bE(X2 |Y ).

(d) (Positivity) If Y ≤ 0, then E(Y |X) ≤ 0.

(e) If X and Y are independent, then E(Y |X) = E(Y ).

(f) If Y = g(X), then E(Y |X) = E(g(X) |X) = g(X).

(g) (Pull through property) E(Y g(X) |X) = g(X)E(Y |X).

(h) (Total expectation) E(E(Y |X)) = E(Y ).

(i) (Tower property) Let k < n. Then

E (E(Y |X1, ..., Xk) |X1, ..., Xn) = E(Y |X1, ..., Xk) ,

and

E (E(Y |X1, ..., Xn) |X1, ..., Xk) = E(Y |X1, ..., Xk) .

(j) (Jensen’s Inequality) If f : R → R is a convex function and E(|X|) < ∞,

then

f(E(X)) ≤ E(f(X)) ,

and

f(E(X |Y )) ≤ E(f(X) |Y ) .
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B.4 Modes of Convergence of Random Variables

In the following four definitions, let (Xn)n≥0 be a sequence of random variables and X a

random variable defined on the same probability space (Ω,F ,P).

Definition B.4.1 (Almost sure convergence). We say the sequence (Xn)n≥0 con-

verges to X almost surely or with probability 1, if

P( lim
n→∞

Xn = X) = 1 .

We write Xn
a.s.−−→ X.

Note that almost sure convergence means pointwise convergence almost everywhere:

There exists a subset B ⊂ Ω with B ∈ F and P(B) = 1 such that lim
n→∞

Xn(ω) = X(ω) for

all ω ∈ B.

Definition B.4.2 (Convergence in distribution). Let F and Fn, n ≥ 0, be the

cumulative distribution functions of X and Xn, n ≥ 0, respectively. We say the

sequence (Xn)n≥0 converges to X in distribution if

lim
n→∞

Fn(x) = F (x)

for all x ∈ R at which F (x) is continuous. We write Xn
D−→ X.

Almost sure convergence is often referred to as strong convergence. Convergence in dis-

tribution is often referred to as weak convergence.

Definition B.4.3 (Convergence in probability). We say the sequence (Xn)n≥0 con-

verges to X in probability if for any ε > 0 we have

lim
n→∞

P(|Xn −X| ≥ ε) = 0 .

We write Xn
p−→ X.

Definition B.4.4 (Lp convergence or convergence in pth mean). Let p ≥ 1. We

say the sequence (Xn)n≥0 converges to X in Lp or in the pth mean if

lim
n→∞

E(|Xn −X|p) = 0 .

We write Xn
Lp−→ X.
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Theorem B.4.1. Let (Xn)n≥1 be a sequence of random variables and X a random

variable defined on the same probability space. Then

Xn
a.s.−−→ X =⇒ Xn

p−→ X =⇒ Xn
D−→ X ,

and furthermore,

Xn
Lp−→ X =⇒ Xn

p−→ X .

Let c be a constant. Then

Xn
D−→ c =⇒ Xn

p−→ c .

Example B.4.1 (Convergence in distribution does not imply convergence in probability).

Let Ω = {ω1, ω2, ω3, ω4} and P (ωi) = 1/4 for 1 ≤ i ≤ 4. Define the following random

variables:

Xn(ω1) = Xn(ω2) = 1, Xn(ω3) = Xn(ω4) = 0 for all n ≥ N .

X(ω1) = X(ω2) = 0, X(ω3) = X(ω4) = 1 .

Clearly, FXn = FX for all n ≥ N with

FX(x) =


0 if x < 0

1/2 if 0 ≤ x < 1

1 if x ≥ 1 .

Since FXn(x) = FX(x) for all n, it is obvious that Xn
D−→ X. Observe that |Xn(ωi) −

X(ωi)| = 1 for all n ∈ N and 1 ≤ i ≤ 4. Hence

lim
n→∞

P(|Xn −X| ≥
1

2
) = 1 ,

and the sequence (Xn)n≥0 does not converge to X in probability. �

Example B.4.2 (Almost sure convergence does not imply convergence in L1 (in mean)).

Consider Ω = [0, 1] together with standard uniform (Lebesgue) measure P on [0, 1]. Let

the sequence (Xn)n≥1 of random variables Xn : [0, 1]→ R be defined by

Xn(x) =

{
n for 0 ≤ x ≤ 1

n

0 for 1
n
< x ≤ 1
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for all n ≥ 1. Then for all x ∈ Ω with 0 < x ≤ 1 we have limn→∞Xn(x) = 0, and so

Xn
a.s.−−−→ X ≡ 0 .

We have E(|Xn|) = 1 for all n ≥ 1, and so

lim
n→∞

E(|Xn −X|) = 1 6= 0

from which it follows that (Xn)n≥1 does not converge to X in L1 (in mean). �

B.5 Classical Limit Theorems

Theorem B.5.1 (Strong Law of Large Numbers). Let X1, X2, ... be a sequence of

i.i.d. random variables with finite first moment. Let E(X1) = µ and Sn =
∑n

k=1Xk.

Then
Sn
n

a.s.−−−→ µ .

If the random variables X1, X2, ... are nonnegative and E(X1) =∞, then

Sn
n

a.s.−−−→ ∞ .

Theorem B.5.2 (Central Limit Theorem). Let X1, X2, ... be a sequence of i.i.d.

random variables with Var(X1) = σ2 < ∞ and E(X1) = µ. Set Sn =
∑n

k=1Xk.

Then
Sn − nµ√

nσ

D−−→ N(0, 1)

where N(0, 1) is a standard normal random variable.

B.6 Coupon Collector’s Problem.

This is a familiar problem in basic probability. Since applications of this problem appear

in various places in our analysis of rates of convergence of Markov chains, we give a brief

review: A cereal company issues n distinct types of coupons which a collector collects

one-by-one. Each cereal box the collector purchases contains exactly one coupon, and

the probability of finding a certain type of coupon in a purchased box is uniform over

all types of coupons. Let Xk denote the number of distinct types the collector has after

having purchased k boxes. The sequence (Xn)n≥0 is a Markov chain on state space

S = {0, 1, ..., n}. It is a pure birth chain, and state n is absorbing. The following the the

transition diagram for the chain:
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n

Of particular interest for this chain is the expected time T until absorption in n. As can

be seen from the transition diagram, for i = 0, 1, ..., n− 1, the waiting time T j for going

from state j to state j + 1 has a geometric distribution with success parameter pj = n−j
n

.

By the linearity of expectation, we get

E(T ) =
n−1∑
j=0

n

n− j
= n

n∑
j=1

1

j
. (B.2)

From the inequality

ln(n+ 1) ≤
n∑
j=1

1

j
≤ 1 + lnn

we conclude

lim
n→∞

(
n∑
j=1

1

j

)
/lnn = 1 ,

and hence for large n ∈ N,

E(T ) ≈ n lnn . (B.3)

The variance of T j is

Var(T j) =

(
n

n− j

)2(
1− n− j

n

)
=

j n

(n− j)2
≤ n2

(n− j)2
,

and so

Var(T ) ≤ n2

n∑
j=1

1

j2
≤ 5

3
n2 , (B.4)

where we have used
∑∞

j=1
1
j2

= π2

6
.

We can say more about the distribution of T and will compute the probabilities P(T ≤ k)

for k ≥ n. We do so by rephrasing coupon collecting as an occupancy problem: Place

k indistinguishable balls into n distinct boxes, one at a time and independently of each

other, where each time a ball is placed, a box is chosen uniformly at random. The event of

having collected n distinct coupons by time k has the same probability as the event that
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each of the n boxes contains at least one ball. Its computation involves two combinatorial

questions. The first is: In how many ways can one distribute k balls into n distinct boxes?

It is the number of all possible linear arrangements of n − 1 dividers and k balls. This

number is
(

(n−1)+k
n−1

)
. Here is an example for 7 boxes and 10 balls:

| ◦ ◦ ◦ | | ◦ | ◦ ◦ ◦ ◦ ◦ | | ◦

Boxes 1, 3 and 6 are empty. Box 2 contains three balls, Boxes 4 and 7 contain one ball

each, and Box 5 contains five balls. The second combinatorial question is: In how many

ways can one arrange k balls into n boxes so that each box contains at least one ball? To

answer, proceed as follows. First put exactly one ball into each box, which leaves k − n
balls unassigned. Distribute these k−n balls in any way among the n boxes. The number

of ways in which one can do this is
(

(n−1)+(k−n)
n−1

)
. Thus, altogether, we get

P(T ≤ k) =

(
k − 1

n− 1

)
/

(
n+ k − 1

n− 1

)
for k ≥ n .

In several places in our analysis of rates of convergence, we need an estimate for the tail

probability of T for large times k. The following proposition gives such an estimate.

Lemma B.6.1. Let T be the waiting time for the coupon collector’s problem. For

sufficiently large n and any c > 0, we have

P(T > n lnn+ cn) ≤ e−c . (B.5)

Proof. Note that the event {T > n lnn+ cn} is the same as the event
n⋃
j=1

Cj where Cj is

the even that Coupon j has not been collected by time k = n lnn + cn. The probability

of event Cj is P(Cj) = (1− 1
n
)bn lnn+cnc. Since P(

n⋃
j=1

Cj) ≤
n∑
j=1

P(Cj), we get

P(T > n lnn+ cn) ≤ n

(
1− 1

n

)bn lnn+cnc

≤ ne−
n lnn+cn−1

n

≈ e−c .



Appendix C

C.1 Growth Rates of Functions

Definition C.1.1 (Big-Oh). Let f : R → R and g : R → R be two functions. We

say that f is asymptotically of at most the order of g, or f is big-Oh of g,

if there exist positive constants x0 and M such that

|f(x)| ≤M |g(x)| for all x ≥ x0 .

In this case we write f(x) = O(g(x)).

Example C.1.1. (a) Let f(n) = n lnn+ 3n2 − 5n for n ≥ 1. Then f(n) = O(n2).

(b) Let f(x) = 9x3 +
√
x4 + x2. Then f(x) = O(x3). It would also be correct to state

f(x) = O(x5), for example. �

Definition C.1.2 (Big-Omega). Let f : R → R and g : R → R be two functions.

We say that f is asymptotically of at least the order of g, or f is big-Omega

of g, if there exist positive constants x0 and M such that

|f(x)| ≥M |g(x)| for all x ≥ x0 .

In this case we write f(x) = Ω(g(x)).

Notice that f(x) = Ω(g(x)) if and only if g(x) = O(f(x)).

367
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Definition C.1.3 (Big-Theta). Let f : R → R and g : R → R be two functions.

We say that f is asymptotically of the same order as g, or f is big-Theta

of g, if

f(x) = O(g(x)) and g(x) = O(f(x)) .

In this case we write f(x) = Θ(g(x)).

Example C.1.2. Let f(n) = n lnn+ 3n2 − 5n for n ≥ 1. Then f(n) = Θ(n2). �

Definition C.1.4 (Little-oh). Let f : R→ R and g : R→ R be two functions. We

say that f is asymptotically of smaller order than g, or f is little-oh of g, if

f(x) = O(g(x)) and f(x) 6= Θ(g(x)) .

In this case we write f(x) = o(g(x)).

Example C.1.3. Let f(n) = n lnn + 3n2 − 5n for n ≥ 1. Then f(n) = o(n2 lnn). It

would also be correct to state f(n) = o(n3), for example. �

C.2 Lim sup, Lim inf

Definition C.2.1 (Supremum, Infimum). Let E be a non-empty subset of R. We

say b ∈ R is the supremum of E and write b = sup(E) if b is the smallest upper

bound of E. That is, x ≤ b for all x ∈ E, and for any other upper bound M of E

we have b ≤M .

We say a ∈ R is the infimum of E and write a = inf(E) if a is the largest lower

bound of E. That is, a ≤ x for all x ∈ E, and for any other lower bound m of E

we have m ≤ a.
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Definition C.2.2 (Lim sup, Lim inf). Let (an)n≥0 be a sequence of real numbers.

(a) The limit supremum of (an)n≥0, denoted by lim supn→∞ an, is defined by

lim sup
n→∞

an = lim
n→∞

(
sup
i≥n

ai

)
.

(b) The limit infimum of (an)n≥0, denoted by lim infn→∞ an, is defined by

lim inf
n→∞

an = lim
n→∞

(
inf
i≥n

ai

)
.

Unlike the limit, which may not exist for a given sequence (an)n≥0, the limit supremum

and the limit infimum always exist for any sequence. If lim
n→∞

an does exist, then

lim
n→∞

an = lim sup
n→∞

an = lim inf
n→∞

an .

The limit superior lim sup
n→∞

an is the largest accumulation point for the sequence (an)n≥0.

Thus for any ε > 0, for only finitely many k ∈ N,

ak > ε+ lim sup
n→∞

an

and for infinitely many j ∈ N,

aj > −ε+ lim sup
n→∞

an .

Similarly, the limit inferior is the smallest accumulation point for the sequence (an)n≥0.

For only finitely many k ∈ N,

ak < −ε+ lim inf
n→∞

an

and for infinitely many j ∈ N,

aj < ε+ lim inf
n→∞

an .

C.3 Interchanging Limit and Integration

Here we state several classical limit theorems a for integration. We phrase the theorems

in terms of expectations of random variables. For a reference see [31].
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Theorem C.3.1 (Monotone Convergence Theorem). Let (Xn)n≥0 be a sequence of

nonnegative random variables and X a (not necessarily finite) random variable with

lim
n→∞

Xn = X a.s.

If

0 ≤ X0 ≤ X1 ≤ X2 ≤ · · · a.s. ,

then

lim
n→∞

E(Xn) = E(X) .

Recall: We assume that the random variables (Xn)n≥0 and X are defined on the same

probability space (Ω,F , P ). When we write

lim
n→∞

Xn = X a.s., (C.1)

the “a.s.” stands for almost sure convergence or (alternatively stated) convergence

with probability 1 (recall Definition B.4.1). More precisely, (C.1) means that we have

lim
n→∞

Xn(ω) = X(ω)

for all ω ∈ Ω, except possibly for ω ∈ A where A ⊂ Ω is an event of probability 0.

Similarly, 0 ≤ X0 ≤ X1 ≤ X2 ≤ · · · a.s. means

0 ≤ X0(ω) ≤ X1(ω) ≤ X2(ω) ≤ · · ·

for all ω ∈ Ω, except possibly for ω ∈ B where B ⊂ Ω is an event of probability 0.

As a consequence of Theorem C.3.1, we have the following corollary for the interchange

of E and
∑

for nonnegative random variables:

Corollary C.3.2. Let (Yn)n≥0 be a sequence of nonnegative random variables and

X a (not necessarily finite) random variable with

∞∑
n=0

Yn = X a.s.

Then
∞∑
n=0

E(Yn) = E(X) .
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The corollary follows from Theorem C.3.1 by setting

Xn =
n∑
k=0

Yk for n ≥ 0 .

Note that any one of the expectations in Corollary C.3.2 may be ∞.

Theorem C.3.3 (Dominated Convergence Theorem). Let (Xn)n≥0 be a sequence

of random variables and X a random variable with

lim
n→∞

Xn = X a.s.

If there exists a random variable Y with E(|Y |) <∞ such that

|Xn| ≤ Y a.s. for all n ≥ 0 ,

then

lim
n→∞

E(Xn) = E(X) .

Corollary C.3.4 (Bounded Convergence). Let (Xn)n≥0 be a sequence of random

variables and X a random variable with

lim
n→∞

Xn = X a.s.

If there exists a constant K0 such that

|Xn| ≤ K0 a.s. for all n ≥ 0 ,

then

lim
n→∞

E(Xn) = E(X) .

Combining Corollary C.3.2 and Theorem C.3.3 yields the following proposition.

Proposition C.3.5. If a sequence of random variables (Zn)n≥0 satisfies
∞∑
n=0

E(|Zn|) <∞, then

∞∑
k=0

E(Zk) = E

(
∞∑
k=0

Zk

)
.
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Proof. Set Yn = |Zn| and apply Corollary C.3.2. This yields

∞∑
n=0

E(Yn) =
∞∑
n=0

E(|Zn|) = E

(
∞∑
n=0

|Zn|

)
<∞ .

Since the random variable Y =
∑∞

n=0 |Zn| has finite expectation, it is finite almost

surely. As a consequence,
∑∞

n=0 Zn converges almost surely. Set Xn =
∑n

n=0 Zk and

X =
∑∞

k=0 Zk. Then

lim
n→∞

Xn = X a.s.

Since we have E(|Y |) = E(Y ) <∞ and

|Xn| ≤
n∑
k=0

|Zk| ≤ Y a.s. for all n ≥ 0 ,

by Theorem C.3.3, we conclude

lim
n→∞

E(Xn) = lim
n→∞

n∑
k=0

E(Zn) =
∞∑
k=0

E(Zk) = E(X) = E

(
∞∑
k=0

Zk

)
.

In general, a sequence of random variables (Xn)n≥0 may not converge a.s. However, for

all ω ∈ Ω,

lim inf
n→∞

Xn(ω) and lim sup
n→∞

Xn(w)

do always exist, and

lim inf
n→∞

Xn and lim sup
n→∞

Xn

are random variables on the same probability space (Ω,F ,P). Fatou’s Lemma tells us

what happens when we interchange E and lim sup (or lim inf).
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Lemma C.3.6 (Fatou’s Lemma). Let (Xn)n≥0 be a sequence of random variables.

(a) If there exists a random variable Y with E(|Y |) <∞ such that

Y ≤ Xn a.s. for all n ≥ 0 ,

then

E
(

lim inf
n→∞

Xn

)
≤ lim inf

n→∞
E(Xn) .

(b) Similarly, if there exists a random variable Y with E(|Y |) <∞ such that

Xn ≤ Y a.s. for all n ≥ 0 ,

then

E
(

lim sup
n→∞

Xn

)
≥ lim sup

n→∞
E(Xn) .

Note that the random variable Y may be a constant. Clearly, (b) follows from (a) by

replacing Xn with −Xn and noting that

lim inf
n→∞

Xn = lim sup
n→∞

(−Xn) .

�
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Galton-Watson branching process, 162

gambler’s ruin, 129, 202

gambler’s ruin probabilities, 224, 237
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global balance equations, 62

graph
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cutset, 241

lollipop, 251, 265

star, 246, 247

Hamming weight, 45

hard-core model, 273

harmonic, 222

harmonic extension, 222

existence, 224

uniqueness, 223

harmonic function, 195, 222

hitting time, 22

initial distribution, 11

invariant measure, 64
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limiting distribution, 21
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Markov chain, 8, 9, 13

adapted to a process, 334

reversible, 214

Markov operator, 218

Markov property, 8–10

Markov’s inequality, 360

martingale, 181

Convergence theorem, 194

Optional stopping theorem, 189

square integrable, 186

submartingale, 181

supermartingale, 181

transform, 192

maximum principle, 223

maximum random variable, 147

Metropolis-Hastings algorithm, 268

mixing time, 307

Moran model, 33, 186

Nash–Williams inequality, 241, 256

network, 221

null recurrent, 69

Ohm’s law, 226

Orey’s theorem, 113
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Pólya-Eggenberger distribution, 36

parallel law, 234
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Raleigh’s Monotonicity Principle, 240

random mapping representation, 332

random walk on graphs, 27

range, 152

recurrent, 53

reducible, 38

reflection principle, 136

regular matrix, 89

resistance, 221

reversed process, 212

riffle shuffle, 293

Schur’s theorem, 351

self-adjoint, 218

sequence patterns, 199

series law, 233

sigma algebra, 357

simulated annealing, 277

sink, 225

source, 225

spectral representation, 313

Spectral theorem, 219

state space, 11

stationary distribution, 21, 61

steady state distribution, 71

Stirling’s approximation, 349

stochastic optimization, 276

stochastic process, 8

stopped process, 188

stopping time, 22, 187

randomized, 334

Strong law of large numbers, 364

strong Markov property, 22, 23

strong stationary time, 334

subharmonic function, 195

subnetwork, 221

substochastic, 60

success runs, 58

superharmonic function, 195

superposition principle, 222

target distribution, 268

Thomson’s Principle, 239

top-to-random shuffle, 291

total variation distance, 304

trajectory, 11

transient, 53

transiition probability, 18

transition graph, 15

transition matrix, 14

transition probability, 11, 17

urn models, 29, 30
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