Instructions: Choose six of the eight problems to solve.

1. Let $n \geq 1$ be a natural number, and let X be the union of the unit sphere in \mathbb{R}^n and the line connecting the north and south poles.
 a) What is the fundamental group of this topological space?
 b) Let $n \geq 3$. Define a space \tilde{X} and a map $\pi : \tilde{X} \to X$ which is the universal covering.

2. Consider the unit sphere in \mathbb{C}^2:
 $$S^3 = \{(w, z) \mid |w|^2 + |z|^2 = 1\}.$$
 Given a positive integer k, consider the continuous map
 $$T : S^3 \to S^3$$
 given by the formula $T(w, z) = (e^{2\pi i/k}w, e^{2\pi i/k}z)$.
 a) Show that T is a diffeomorphism.
 b) Let Γ be the transformation group generated by T. Show that T is a finite group. What is its order?
 c) Show that the quotient space $M = S^3/\Gamma$ is a manifold.
 d) What is the fundamental group of M?
 e) Classify the covering spaces of M.

3. Prove that if \mathbb{CP}^{2n} is the universal cover of a smooth manifold M, then $M = \mathbb{CP}^{2n}$.

4. Recall the Poincare duality says that for a compact oriented manifold M^n, $H_i(M; \mathbb{Z})$ is isomorphic to $H^{n-i}(M; \mathbb{Z})$. Prove that if M is a compact oriented manifold of dimension $2k$ and that $H_{k-1}(M; \mathbb{Z})$ is torsion free, i.e., torsion part is zero, prove that $H_k(M; \mathbb{Z})$ is also torsion free.

5. Let M and N be connected oriented n-dimensional differentiable manifolds. Their connected sum $M \# N$ is defined as follows: pick points x and y in M and N respectively, remove small open balls $B_\epsilon(x)$ and $B_\epsilon(y)$ around x and y, and identify the boundaries of the resulting manifolds $M \setminus B_\epsilon(x)$ and $N \setminus B_\epsilon(y)$, which are diffeomorphic to the sphere S^{n-1}, by an orientation reversing diffeomorphism.
 Calculate the Euler characteristic of $M \# N$ in terms of M and N.
6. Let \(f : M \to S^1 \), and let \(N \subseteq M \) be a closed orientable 1–manifold.

a) Show that there is a \(\theta \in S^1 \), so that \(f^{-1}(\theta) \) is a submanifold, and \(f^{-1}(\theta) \cap N \).

b) Suppose that \(\Sigma \subseteq M \) is a compact orientable surface with boundary, so that \(\partial \Sigma = N \). Show that \(\int_N f^*(d\theta) = 0 \).

c) Let \(\theta \in S^1 \) be as in part (a), and suppose \(\int_N f^*(d\theta) = 0 \). Show \(f^{-1}(\theta) \cap N \) consists of an even number of points.

7. Let \(M \) be a smooth \(n \)-manifold equipped with a Riemannian metric, and let \(u : [0, 1] \times (-\varepsilon, \varepsilon) \to M \) be a smooth map so that the curve \(t \mapsto u(t, s_0) \) is a geodesic for all \(s_0 \in (-\varepsilon, \varepsilon) \). Let \(\gamma : [0, 1] \to M \) be the curve \(t \mapsto u(t, 0) \) and let \(V \) be the vector field along \(\gamma \) defined by

\[
V = \frac{\partial u}{\partial s} \bigg|_{s=0}.
\]

a) Show that \(V \) satisfies the Jacobi equation

\[
\frac{D^2 V}{dt^2} + R(V, \dot{\gamma})\dot{\gamma} = 0,
\]

where \(R(X, Y)Z \) is the curvature tensor of \(M \).

b) Show that the set of such \(V \) is a vector space of dimension \(2n \).

8. Let \(M = \{(x, y, z) ; x^2 + y^2 = z^2, z > 0 \} \subseteq \mathbb{R}^3 \). Equip \(M \) with the Riemannian metric restricted from the Euclidean metric on \(\mathbb{R}^3 \). Show that \(M \) is locally Euclidean.