GEOMETRY/TOPOLOGY PRELIMINARY EXAMINATION, JUNE
2025

INSTRUCTIONS:

e There are three parts to this exam. Do three problems from each part. If you
attempt more than three, then indicate which you would like graded; otherwise
we will grade the first three you attempt in each section.

e In each problem, full credit requires proving that your answer is correct. You
may quote and use theorems and formulas. But if a problem asks you to state or
prove a theorem or a formula, you need to provide the full details.

Part1

Do three of the following five problems.

Problem 1. (i) For any vector field X, show that the Lie derivative Lx on p-forms
commutes with the exterior derivative: we havedo Lx = Lx od.

(ii) For any pair of vector fields X, Y and any p-form 77, show that we have
(LxLy — LyLx)(n) = Lix,y(n)-

Problem 2. Consider the 2n x 2n matrix | with block decomposition
|0 |
= [=are ]
where I, is the n x n identity matrix. Show that
Sp(2m,R) = { A € Mapau(R) : ATJA =]}

is an embedded submanifold of the vector space My, x2,(RR) of all 2nn x 2n real matrices.
Compute its dimension and describe its tangent space at the identity as a subspace of
MZn X2n (]R)

Problem 3. (i) State the definition of an involutive distribution on a smooth manifold.

(ii) Suppose that D is an involutive distribution spanned by two vector fields X and
Y, and that 6 is a 1-form such that (X) = 6(Y) = 0. Show that d0(X,Y) = 0.

Problem 4. Let f : R — R. be a positive smooth function, and consider the surface of
revolution

M = {(f(u) cos(v), f(u)sin(v),u) |u € R,0 < v <2r} C R?



(i) Show that M is a submanifold, and using (u,v) as global coordinates on M write
down the metric :*¢ on M induced by pulling back the standard Euclidean metric g on
R? along the inclusion ¢ : M — R3.

(ii) Derive the geodesic equations for this metric, and determine for which values of
up the curve {(u9,v)} is a geodesic on M when parametrized to have constant speed.

Problem 5. (i) Suppose F : N — M is a smooth map which is transverse to an embedded
submanifold X C M of codimension k. Show that F~!(X) is a codimension k embedded
submanifold of N.

(ii) Show that if two embedded submanifolds X, X, intersect transversely in M, then
TP(X1 NXy) = Tp(Xl) N Tp(Xz).



Part 11

Do three of the following five problems.

Problem 1. Compute the fundamental group of the Klein bottle, i.e. the space obtained
by gluing opposite sides of a rectangle as indicated by the arrows in the diagram:

Problem 2.

(1) Give an example of a covering map f : Y — X between connected spaces such
that there exist two points y1, y» such that f(y1) = f(y2) = x but the images of
the induced maps

U m(Yy) —» mXx), P y) — m(Xx)
do not agree.

(2) Prove that, for any such example, the images of ffl) and fiz) must be conjugate
inside 711 (X, x).

Problem 3. For integers 0 < m < n, consider the natural inclusion RP"~! — RP"
induced by the inclusion R™ C R""! as the first m coordinates. We denote the quotient
by RP?, := RP" /RP™"!, known as a stunted projective space.

(1) Compute the fundamental group of IRPS.

(2) Compute the homology groups H,,(RP§; Z) for all n > 0.

(3) Compute the homology groups H, (IRPS; Z/p) for all n > 0 and primes p.

Problem 4.
(1) Give an example of a connected topological space X with H3(X;Z) = Z/3, and
H,(X;Z) =0foralln #0,3.
(2) For this space X, compute H, (X x X;Z) for alln > 0.

Problem 5. Consider two small non-intersecting open 2-dimensional disks D1, D, C
RP?.
(1) Compute H, (RP?\Dy; Z) and the map induced on H, by the inclusion RP*\ D; C
RP? for all n > 0.



(2) Compute H,(RP?\(D;1]D;);Z) for n > 0.
(3) Let B; be the boundary of the closure of D; in IRP?. With respect to your identi-
fication in (b), what is the image of the map

Hi(B1;Z) — Hi(RP*\(D, [ [ D2); Z)

induced by the inclusion?



Part 111

Do three of the following five problems.

Problem 1.

(1) Let X be a finite CW complex and let F be any field. Prove that the Euler char-
acteristic x(X) is equal to

X(X) = Y(~1)"dimp (Ha (X, F)) -

n

(2) Prove that the Euler characteristic of any odd-dimensional closed manifold M is
1
Zero.

Problem 2.
Let M be a compact 3-manifold with boundary i : 9M — M, and consider homology
H. = H.(—,F;) with mod-2 coefficients.

(1) Prove equalities of dimensions
dimg, <Im((H2(M, aM) > Hl(aM))) = dimp, (Ker((Hl(aM) Ly Hl(M)))
and
dimg, (Ker((Hl(aM) Ly Hl(M))) = dimp, (Coker((Hl(M) LN Hl(aM))) .
(2) Using (a), prove the equality
dim(Im((Hz(M, M) > Hl(aM))) = %dimHl (OM) .

[Hint: use the compatibility of Poincaré duality with the long exact sequence of
the pair (M, oM).]
(3) Conclude that RIP? is not the boundary of any compact 3-manifold.

Problem 3. Prove the Poincaré Lemma: the de Rham cochains Q*(R") is quasi-isomorphic
to R[0], the cochain complex concentrated in degree zero.

Problem 4.

(1) Let M be a compact odd-dimensional manifold, possibly with boundary. Prove
that the Euler characteristic of the boundary is twice that of M:

x(0M) =2-x(M) .

(2) Using (1), for infinitely many dimensions n, give an example of a closed ori-
entable n-manifold N which is not the boundary of any compact (n 4 1)-manifold.

ou may assume that M is homotopy equivalent to a finite CW complex.



Problem 5. Let M be an n-manifold with orientation y, i.e., a consistent choice of gen-
erator yy € H,(M, M \ x;Z) for each point x € M. Recall thatamap f : M — M is
orientation-reversing if f.px = —py(y) for all x. Prove there is an orientation-reversing
homeomorphism

f:CP" — CP"
if and only if n is odd.



