
GEOMETRY/TOPOLOGY PRELIMINARY EXAMINATION, JUNE
2025

INSTRUCTIONS:
• There are three parts to this exam. Do three problems from each part. If you

attempt more than three, then indicate which you would like graded; otherwise
we will grade the first three you attempt in each section.
• In each problem, full credit requires proving that your answer is correct. You

may quote and use theorems and formulas. But if a problem asks you to state or
prove a theorem or a formula, you need to provide the full details.

Part I

Do three of the following five problems.

Problem 1. (i) For any vector field X, show that the Lie derivative LX on p-forms
commutes with the exterior derivative: we have d ◦ LX = LX ◦ d.

(ii) For any pair of vector fields X, Y and any p-form η, show that we have

(LXLY −LYLX)(η) = L[X,Y](η).

Problem 2. Consider the 2n× 2n matrix J with block decomposition

J =
[

0 In
−In 0

]
,

where In is the n× n identity matrix. Show that

Sp(2n, R) =
{

A ∈ M2n×2n(R) : AT JA = J
}

is an embedded submanifold of the vector space M2n×2n(R) of all 2n× 2n real matrices.
Compute its dimension and describe its tangent space at the identity as a subspace of
M2n×2n(R).

Problem 3. (i) State the definition of an involutive distribution on a smooth manifold.

(ii) Suppose that D is an involutive distribution spanned by two vector fields X and
Y, and that θ is a 1-form such that θ(X) = θ(Y) = 0. Show that dθ(X, Y) = 0.

Problem 4. Let f : R→ R>0 be a positive smooth function, and consider the surface of
revolution

M =
{
( f (u) cos(v), f (u) sin(v), u)

∣∣ u ∈ R, 0 ≤ v < 2π
}
⊂ R3



(i) Show that M is a submanifold, and using (u, v) as global coordinates on M write
down the metric ι∗g on M induced by pulling back the standard Euclidean metric g on
R3 along the inclusion ι : M→ R3.

(ii) Derive the geodesic equations for this metric, and determine for which values of
u0 the curve {(u0, v)} is a geodesic on M when parametrized to have constant speed.

Problem 5. (i) Suppose F : N → M is a smooth map which is transverse to an embedded
submanifold X ⊂ M of codimension k. Show that F−1(X) is a codimension k embedded
submanifold of N.

(ii) Show that if two embedded submanifolds X1, X2 intersect transversely in M, then
Tp(X1 ∩ X2) = Tp(X1) ∩ Tp(X2).



Part II

Do three of the following five problems.

Problem 1. Compute the fundamental group of the Klein bottle, i.e. the space obtained
by gluing opposite sides of a rectangle as indicated by the arrows in the diagram:

Problem 2.
(1) Give an example of a covering map f : Y → X between connected spaces such

that there exist two points y1, y2 such that f (y1) = f (y2) = x but the images of
the induced maps

f (1)∗ : π1(Y, y1)→ π1(X, x), f (2)∗ : π1(Y, y2)→ π1(X, x)

do not agree.
(2) Prove that, for any such example, the images of f (1)∗ and f (2)∗ must be conjugate

inside π1(X, x).

Problem 3. For integers 0 < m ≤ n, consider the natural inclusion RPm−1 → RPn

induced by the inclusion Rm ⊂ Rn+1 as the first m coordinates. We denote the quotient
by RPn

m := RPn/RPm−1, known as a stunted projective space.
(1) Compute the fundamental group of RP8

3.
(2) Compute the homology groups Hn(RP8

3; Z) for all n ≥ 0.
(3) Compute the homology groups Hn(RP8

3; Z/p) for all n ≥ 0 and primes p.

Problem 4.
(1) Give an example of a connected topological space X with H3(X; Z) = Z/3, and

Hn(X; Z) = 0 for all n 6= 0, 3.
(2) For this space X, compute Hn(X× X; Z) for all n ≥ 0.

Problem 5. Consider two small non-intersecting open 2-dimensional disks D1, D2 ⊂
RP2.

(1) Compute Hn(RP2\D1; Z) and the map induced on Hn by the inclusion RP2\D1 ⊂
RP2 for all n ≥ 0.



(2) Compute Hn(RP2\(D1 ä D2); Z) for n ≥ 0.
(3) Let B1 be the boundary of the closure of D1 in RP2. With respect to your identi-

fication in (b), what is the image of the map

H1(B1; Z)→ H1(RP2\(D1 ä D2); Z)

induced by the inclusion?



Part III

Do three of the following five problems.

Problem 1.
(1) Let X be a finite CW complex and let F be any field. Prove that the Euler char-

acteristic χ(X) is equal to

χ(X) = ∑
n
(−1)ndimF

(
Hn(X, F)

)
.

(2) Prove that the Euler characteristic of any odd-dimensional closed manifold M is
zero.1

Problem 2.
Let M be a compact 3-manifold with boundary i : ∂M ↪→ M, and consider homology

H∗ = H∗(−, F2) with mod-2 coefficients.
(1) Prove equalities of dimensions

dimF2

(
Im
(
(H2(M, ∂M)

∂→ H1(∂M)
))

= dimF2

(
Ker

(
(H1(∂M)

i∗→ H1(M)
))

and

dimF2

(
Ker

(
(H1(∂M)

i∗→ H1(M)
))

= dimF2

(
Coker

(
(H1(M)

i∗→ H1(∂M)
))

.

(2) Using (a), prove the equality

dim
(

Im
(
(H2(M, ∂M)

∂→ H1(∂M)
))

=
1
2

dim H1(∂M) .

[Hint: use the compatibility of Poincaré duality with the long exact sequence of
the pair (M, ∂M).]

(3) Conclude that RP2 is not the boundary of any compact 3-manifold.

Problem 3. Prove the Poincaré Lemma: the de Rham cochains Ω∗(Rn) is quasi-isomorphic
to R[0], the cochain complex concentrated in degree zero.

Problem 4.
(1) Let M be a compact odd-dimensional manifold, possibly with boundary. Prove

that the Euler characteristic of the boundary is twice that of M:

χ(∂M) = 2 · χ(M) .

(2) Using (1), for infinitely many dimensions n, give an example of a closed ori-
entable n-manifold N which is not the boundary of any compact (n+ 1)-manifold.

1You may assume that M is homotopy equivalent to a finite CW complex.



Problem 5. Let M be an n-manifold with orientation µ, i.e., a consistent choice of gen-
erator µx ∈ Hn(M, M r x; Z) for each point x ∈ M. Recall that a map f : M → M is
orientation-reversing if f∗µx = −µ f (x) for all x. Prove there is an orientation-reversing
homeomorphism

f : CPn → CPn

if and only if n is odd.


