Algebra Preliminary Exam September 22 2003

- 1. Exhibit a 3-Sylow subgroup in the symmetric group S_6 and describe its structure. Find the normalizer of this subgroup and compute the total number of Sylow 3-subgroups in S_6 .
- 2. Show that every group of order 15 is abelian.
- 3. Let $f = X^3 + pX + q \in k[X]$ be an irreducible polynomial of degree three over a field k of characteristic zero. Denote by x_1, x_2, x_3 the roots of f in the algebraic closure of k.
 - a) Show that $\Delta = [(x_1 x_2)(x_1 x_3)(x_2 x_3)]^2$ is an element of k.
- b) Show that the Galois group of f is either S_3 or A_3 depending on whether Δ is a square in k or not.
- 4. Let F be a finite field with 27 elements
 - a) Describe the structure of the additive group of F.
 - b) Describe the structure of the multiplicative group of F.
 - c) Describe the structure of the group of field automorphisms of F.
- 5. Show that the factorring $\mathbb{Z}[X]/(X^2-X+1)$ is an integrally closed domain, describe its field of fractions.
- 6. An element x of a (not necessarily commutative) ring R is said to be strongly nilpotent if there exists an integer n > 0 such that every product of elements of R in which at least n factors coincide with x is zero.
 - a) Show that the set J of strongly nilpotent elements is a two-sided ideal in R.
 - b) Show that J is contained in the Jacobson radical of R.
 - c) Show that if R is Artinian then J coincides with the Jacobson radical of R.