ALGEBRA PRELIM - September 13, 2006

- (1) Let F be a field of cardinality 625.
 - What is **F** as an additive group?
 - What is the multiplicative group \mathbb{F}^* of units of \mathbb{F} ?
 - What is the group of field automorphisms of \mathbb{F} ?
- (2) Let G be the cyclic group $\mathbb{Z}/5$ and let \mathbb{F} be the field of 625 elements.
 - Describe the group algebra $\mathbb{F} G$ as a k-vector space and specify its ring structure.
 - Let \mathbb{C} denote the complex numbers and let $\mathbb{C}G$ be the group algebra of G over \mathbb{C} . Decompose $\mathbb{C}G$ as a direct sum of irreducible $\mathbb{C}G$ modules.
 - List the simple $\mathbb{F}G$ -modules and determine the Jacobson radical of $\mathbb{F}G$.
- (3) Consider the ring $R = \mathbb{C}[x,y]/(y^2-x^3)$, where \mathbb{C} denotes the complex numbers.
 - \bullet Show that R is an integral domain.
 - Find a chain of prime ideals of R of maximal length.
 - Describe all the maximal ideals of R.
 - Construct the integral closure of R.
- (4) Let G be a group of order 63.
 - Show that every 7-Sylow subgroup G_7 of G is normal
 - Show that G must be a semi-direct product.
 - List all isomorphism classes of groups of order 63.
- (5) Let R be a ring, M a right R-module, and N a left R-module.
 - State the universal mapping property of $M \otimes_R N$.
 - Give an example of a commutative ring R and non-zero R-modules M, N with $M \otimes_R N = 0$.
 - Let K be a field and let A, B be K-algebras. Describe the natural K-algebra structure on $A \otimes_K B$.
- (6) Let $K = \mathbb{Q}[i]$.
 - Show that *K* is a field.
 - Determine the degree of the splitting field L of $x^{15} 1$ over K.
 - Determine Gal(L/K).
 - Describe the fields intermediate between K and L.