Algebra Preliminary Exam September 2009

Do all of the following questions.

1. Let G be a group, and V and W be two irreducible representation of G over a field k.

(a) If V and W are not isomorphic, show that the G-subrepresentations of the product $V \times W$ are precisely those on the following list:

$$\{0\}, \quad V \times \{0\}, \quad \{0\} \times W, \quad V \times W.$$

(b) Is the same result true if $V \cong W$?

2. Let G be a group of order 12.

(a) Describe the possible structures for the group ring $\mathbb{C}[G]$ as a product of simple algebras over \mathbb{C} .

(b) How many irreducible representations can G have, and what are their dimensions? (There may be different possibilities here, depending on the structure of G.)

3. (a) Find the Galois group of the splitting field K of $x^3 + 3$ over \mathbb{Q} and describe how that group acts on the roots of this polynomial.

(b) Find all intermediate subfields between \mathbb{Q} and K.

4. Which of the following rings are Noetherian? (In each case, justify your answer.)

(a) The subring of $\mathbb{C}[x, y]$ consisting of all polynomials f(x, y) such that f(x, 0) is a constant polynomial.

(b) The subring of $\mathbb{C}[x, y]$ consisting of all polynomials f(x, y) whose gradient vanishes at the point x = y = 0.

5. Consider the following modules over the ring of integers \mathbb{Z} :

$$M = \bigoplus_{p} \mathbb{Z}/p\mathbb{Z}$$
 and $N = \prod_{p} \mathbb{Z}/p\mathbb{Z}$,

where both the direct sum and the product are taken over the set of all prime numbers.

(a) Show that the localizations $M_{\mathfrak{P}}$ are finitely generated $\mathbb{Z}_{\mathfrak{P}}$ -modules for any prime ideal \mathfrak{P} of \mathbb{Z} .

(b) Is (a) true with M replaced by N?

6. Let *M* be a torsion \mathbb{Z} -module. Show that $M \otimes \mathbb{Q}/\mathbb{Z} = 0$.