Algebra Preliminary Exam September 12 1997

- 1. Show that each group of order 15 is abelian.
- 2. Show that for each n the symmetric group S_n may be generated by two elements: the transposition $\sigma = (1,2)$ and the long cycle $\tau = (1,2,...,n)$.
- 3. Find the Galois group of the polynomial $x^8 1$ over \mathbb{Q} . Describe the splitting field K of this polynomial: give the degree of K over \mathbb{Q} , indicate the minimal polynomial of ξ_8 over \mathbb{Q} , find all intermideate fields between K and \mathbb{Q} .
- 4. Let F be a finite field with 27 elements
 - a) Describe the structure of the additive group of F.
 - b) Describe the structure of the multiplicative group of F.
 - c) Describe the structure of the group of field automorphisms of F.
- 5. Show that the ring $\mathbb{Z}[X]/(X^2+X+1)$ is an integrally closed domain, describe its field of fractions.
- 6. Let R be an Artinian ring and let M be a finitely generated R-module. Show that an injective endomorphism of M is an automorphism.