ALGEBRA PRELIMINARY EXAM, AUGUST 2021

Solve three problems from each part below. Full credit requires proving that your answer is correct. You may quote theorems and formulas from the lectures, unless a problem specifically asks you to justify such.

1. Part 1: Groups, Rings and Modules

(1) Let $p<q$ be prime numbers.
(a) Show that if $p \nmid\left(q^{2}-1\right)$ then any group of order $p q^{2}$ is abelian.
(b) Construct a non-abelian group of order $p q^{2}$ when $p \mid\left(q^{2}-1\right)$.
(2) Determine the isomorphism class of the 2-Sylow subgroup of S_{5}. Compute the number of 2 -Sylow subgroups of S_{5}.
(3) Consider the ring $R=\mathbb{C}\left[t^{2}, t^{3}\right] \subset \mathbb{C}[t]$.
(a) Show that R is not a principal ideal domain.
(b) Show that R is not a unique factorization domain.
(4) Consider the subring

$$
\mathbb{Z}[\sqrt{2}]=\{a+b \sqrt{2} \mid a, b \in \mathbb{Z}\}
$$

(a) Define the norm $N(a+b \sqrt{2})=a^{2}-2 b^{2}$. Show that the norm is multiplicative:

$$
N(z w)=N(z) N(w)
$$

(b) Show that $z \in \mathbb{Z}[\sqrt{2}]$ is a unit iff $N(z)= \pm 1$.
(c) Show that the unit group $\mathbb{Z}[\sqrt{2}]^{\times}$is infinite.
(5) Let A, B, C be modules over a PID R such that $A \times B \cong A \times C$.
(a) Suppose A, B, C are finitely generated. Show that $B \cong C$.
(b) Given an example of the above situation where B and C are not isomorphic.

2. Part 2: Linear algebra and Galois theory

(1) (a) Show that any element of finite order in $\mathrm{GL}_{n}(\mathbb{C})$ is diagonalizable.
(b) Show that any non-diagonalizable element of $\mathrm{GL}_{n}\left(\overline{\mathbb{F}}_{p}\right)$ has finite order m, where $m=m^{\prime} p^{r}$ with $p \nmid m^{\prime}$ and $0<r<n$.
(2) Find a complete set of representatives for the similarity classes of a matrix $A \in M_{4}(k)$ which satisfies the equation

$$
A^{3}-A^{2}+2 A-2=0
$$

when
(a) $k=\mathbb{C}$.
(b) $k=\mathbb{Q}$.
(3) Let K be a field of characteristic p and let L / K be a Galois extension with Galois group \mathbb{Z} / p.
(a) Let σ be a generator for $\operatorname{Gal}(L / K)$. Show that there is an element $\alpha \in L$ such that $\sigma(\alpha)=\alpha+1$. (Hint: think of $\sigma-1$ as a nilpotent K-linear endomorphism of the n-dimensional K-vector space L)
(b) Show that L is the splitting field over K of a polynomial of the form $x^{p}-x-a$ with $a \in K$.
(4) Let p be an odd prime and let ζ_{p} be a non-trivial p-th root of unity (in \mathbb{C}).
(a) Show that the extension $\mathbb{Q}\left(\zeta_{p}\right) / \mathbb{Q}$ has a unique quadratic subextension. Find a generator for this subextension. (You may use standard facts about Galois groups of cyclotomic extensions).
(b) When $p=7$, show that this quadratic subextension is $\mathbb{Q}(\sqrt{-7})$.
(5) Compute the Galois group of the polynomial $x^{4}+3 x^{2}+4$ over \mathbb{Q} and over \mathbb{F}_{3}.

3. Part 3: Homological algebra, commutative algebra and REPRESENTATION THEORY

(1) For a field K, is $K[t]$ a flat module over $K\left[t^{2}, t^{3}\right]$? Justify your answer.
(2) For every integer m, view $\mathbb{Z} / m \mathbb{Z}$ as a module over $\mathbb{Z}[x]$ on which x acts by zero. For any two integers m and n compute $\operatorname{Tor}_{\bullet}^{\mathbb{Z}[x]}(\mathbb{Z} / m \mathbb{Z}, \mathbb{Z} / n \mathbb{Z})$ and $\operatorname{Ext}_{\mathbb{Z}[x]}^{\bullet}(\mathbb{Z} / m \mathbb{Z}, \mathbb{Z} / n \mathbb{Z})$.
(3) Let H be the group $\{ \pm 1, \pm i, \pm j, \pm k\}$ subject to

$$
i^{2}=j^{2}=k^{2}=-1 ; i j=-j i=k ; j k=-k j=i ; k i=-i k=j
$$

Let σ be the automorphism of H such that $\sigma(-1)=-1$ and

$$
\sigma: i \mapsto j \mapsto k \mapsto i
$$

Let G be the group generated by its subgroup H and by an element γ of order 3 subject to relations

$$
\gamma h \gamma^{-1}=\sigma(h)
$$

for $h \in H$.
(a) List the dimensions of irreducible representations of G over \mathbb{C}.
(b) Prove that G is not isomorphic to S_{4}.
(4) Let A be a PID and let a be a non-zero element of A. Show that $A /(a)$ is an injective module over itself.

Is the statement true for $A=k\left[t^{2}, t^{3}\right]$?
(5) Prove the following formulation of Nakayama's lemma: Let I be an ideal of a commutative unital ring A. Let M be a finitely generated A-module such that $I M=M$. Prove that there exists an element x of I such that $(1+x) M=0$. Find a counterexample when M is not finitely generated.

