ALGEBRA PRELIMINARY EXAM, AUGUST 2021

Solve **three** problems from each part below. Full credit requires proving that your answer is correct. You may quote theorems and formulas from the lectures, unless a problem specifically asks you to justify such.

1. PART 1: GROUPS, RINGS AND MODULES

- (1) Let p < q be prime numbers.
 - (a) Show that if p ∤ (q² − 1) then any group of order pq² is abelian.
 (b) Construct a non-abelian group of order pq² when p | (q² − 1).
- (2) Determine the isomorphism class of the 2-Sylow subgroup of S_5 . Compute the number of 2-Sylow subgroups of S_5 .
- (3) Consider the ring $R = \mathbb{C}[t^2, t^3] \subset \mathbb{C}[t]$.
 - (a) Show that R is not a principal ideal domain.
 - (b) Show that R is not a unique factorization domain.
- (4) Consider the subring

$$\mathbb{Z}[\sqrt{2}] = \{a + b\sqrt{2} \mid a, b \in \mathbb{Z}\}$$

(a) Define the norm $N(a + b\sqrt{2}) = a^2 - 2b^2$. Show that the norm is multiplicative:

$$N(zw) = N(z)N(w)$$

- (b) Show that $z \in \mathbb{Z}[\sqrt{2}]$ is a unit iff $N(z) = \pm 1$.
- (c) Show that the unit group $\mathbb{Z}[\sqrt{2}]^{\times}$ is infinite.
- (5) Let A, B, C be modules over a PID R such that $A \times B \cong A \times C$.
 - (a) Suppose A, B, C are finitely generated. Show that $B \cong C$.
 - (b) Given an example of the above situation where B and C are not isomorphic.

2. Part 2: Linear Algebra and Galois theory

- (1) (a) Show that any element of finite order in $\operatorname{GL}_n(\mathbb{C})$ is diagonalizable.
 - (b) Show that any non-diagonalizable element of $\operatorname{GL}_n(\overline{\mathbb{F}}_p)$ has finite order m, where $m = m'p^r$ with $p \nmid m'$ and 0 < r < n.
- (2) Find a complete set of representatives for the similarity classes of a matrix $A \in M_4(k)$ which satisfies the equation

$$A^3 - A^2 + 2A - 2 = 0$$

when

- (a) $k = \mathbb{C}$.
- (b) $k = \mathbb{Q}$.
- (3) Let K be a field of characteristic p and let L/K be a Galois extension with Galois group \mathbb{Z}/p .

- (a) Let σ be a generator for $\operatorname{Gal}(L/K)$. Show that there is an element $\alpha \in L$ such that $\sigma(\alpha) = \alpha + 1$. (Hint: think of $\sigma 1$ as a nilpotent K-linear endomorphism of the n-dimensional K-vector space L)
- (b) Show that L is the splitting field over K of a polynomial of the form $x^p x a$ with $a \in K$.
- (4) Let p be an odd prime and let ζ_p be a non-trivial p-th root of unity (in \mathbb{C}).
 - (a) Show that the extension $\mathbb{Q}(\zeta_p)/\mathbb{Q}$ has a unique quadratic subextension. Find a generator for this subextension. (You may use standard facts about Galois groups of cyclotomic extensions).
 - (b) When p = 7, show that this quadratic subextension is $\mathbb{Q}(\sqrt{-7})$.
- (5) Compute the Galois group of the polynomial $x^4 + 3x^2 + 4$ over \mathbb{Q} and over \mathbb{F}_3 .

3. Part 3: Homological Algebra, commutative algebra and representation theory

- (1) For a field K, is K[t] a flat module over $K[t^2, t^3]$? Justify your answer.
- (2) For every integer m, view $\mathbb{Z}/m\mathbb{Z}$ as a module over $\mathbb{Z}[x]$ on which x acts by zero. For any two integers m and n compute $\operatorname{Tor}_{\bullet}^{\mathbb{Z}[x]}(\mathbb{Z}/m\mathbb{Z},\mathbb{Z}/n\mathbb{Z})$ and $\operatorname{Ext}_{\mathbb{Z}[x]}^{\bullet}(\mathbb{Z}/m\mathbb{Z},\mathbb{Z}/n\mathbb{Z})$.
- (3) Let H be the group $\{\pm 1, \pm i, \pm j, \pm k\}$ subject to

$$i^{2} = j^{2} = k^{2} = -1; ij = -ji = k; jk = -kj = i; ki = -ik = j$$

Let σ be the automorphism of H such that $\sigma(-1) = -1$ and

$$\sigma: i \mapsto j \mapsto k \mapsto i.$$

Let G be the group generated by its subgroup H and by an element γ of order 3 subject to relations

$$\gamma h \gamma^{-1} = \sigma(h)$$

for $h \in H$.

- (a) List the dimensions of irreducible representations of G over \mathbb{C} .
- (b) Prove that G is not isomorphic to S_4 .
- (4) Let A be a PID and let a be a non-zero element of A. Show that A/(a) is an injective module over itself.

Is the statement true for $A = k[t^2, t^3]$?

(5) Prove the following formulation of Nakayama's lemma: Let I be an ideal of a commutative unital ring A. Let M be a finitely generated A-module such that IM = M. Prove that there exists an element x of I such that (1 + x)M = 0. Find a counterexample when M is not finitely generated.