ALGEBRA PRELIMINARY EXAM, JUNE 2021

Solve three problems from each part below. Full credit requires proving that your answer is correct. You may quote theorems and formulas from the lectures, unless a problem specifically asks you to justify such.

1. Part 1: Groups, Rings and Modules

(1) Show that a group of order 40 is solvable. Exhibit an example of a nonabelian group of order 40.
(2) Describe the conjugacy classes of S_{5}, and compute their sizes.
(3) Let M be a Noetherian module over a ring R and let $T: M \rightarrow M$ be an endomorphism.
(a) Assume M is a Noetherian module. Show that if T is surjective, then T is an isomorphism.
(b) Find an example to show that the previous item fails without the Noetherian assumption.
(4) (a) Show that the ring $\mathbb{Z}[\sqrt{-3}]$ is not a unique factorization domain.
(b) Show that the ring $\mathbb{Z}\left[\frac{1+\sqrt{-3}}{2}\right]$ is an Euclidean domain.
(c) Determine the units of $\mathbb{Z}[\sqrt{-3}]$ and $\mathbb{Z}\left[\frac{1+\sqrt{-3}}{2}\right]$.
(5) Let R be a PID.
(a) Characterize the finitely generated R-modules M such that $\operatorname{Hom}_{R}(M, R)=$ 0.
(b) Characterize the finitely generated R-modules M such that $\operatorname{Hom}_{R}(M, K / R)$ is finitely generated, where K is the fraction field of R.
(c) Find an example of a non-finitely generated R-module M such that $\operatorname{Hom}_{R}(M, R)$ is finitely generated.

2. Part 2: Linear algebra and Galois theory

(1) (a) Find a complete set of representatives for the similarity classes of $A \in$ $M_{5}(\mathbb{C})$ which has minimal polynomial $(x-1)^{2}(x+3)$.
(b) Suppose $A \in M_{n}(\mathbb{C})$ such that A has minimal polynomial x^{n}. Show that any matrix B such that $A B=B A$ is of the form $f(A)$ for some $f \in \mathbb{C}[x]$.
(2) Let K be the splitting field of $x^{3}-3$ over \mathbb{Q}.
(a) Describe the lattice of intermediate subfields of K.
(b) Find a primitive element of K over \mathbb{Q}.
(3) Let V be an n-dimensional \mathbb{C}-vector space and let $A: V \rightarrow V$ be a linear endomorphism.
(a) Show that A is nilpotent if and only if there is a filtration $F i l^{0}=V \supseteq$ $F i l^{1} \supseteq \cdots F i l^{n}=0$ such that $A\left(F i l^{i}\right) \subset F i l^{i+1}$.
(b) Define the commutator bracket $[S, T]=S \circ T-T \circ S$ for two endomorphisms S, T of V. Show that if A is nilpotent, then

$$
[A,[A,[A, \cdots[A, T] \cdots]=0
$$

where there are $2 n A$'s in the expression.
(4) (a) Show that $x^{p^{n}}-x$ is the product of all monic irreducible polynomials of $\mathbb{F}_{p}[x]$ of degree dividing n. (you may use standard facts about the Galois theory of finite fields)
(b) Find the number of irreducible monic polynomials of degree 3 in $\mathbb{F}_{3}[x]$.
(5) Determine the Galois group of the polynomial $x^{4}+5 x^{2}+5$ over \mathbb{Q} and over $\mathbb{Q}(\sqrt{5})$.

3. Part 3: Homological algebra, commutative algebra and REPRESENTATION THEORY

(1) Let M be a left module over a ring A. Prove that the following are equivalent:
(a) A is flat as a left A-module;
(b) $\operatorname{Hom}_{\mathbb{Z}}(M, \mathbb{Q} / \mathbb{Z})$ is flat as a right A-module.
(2) Let H be the group of quaternionic units $\{ \pm 1, \pm i, \pm j, \pm k\}$ that satisfy relations $i^{2}=j^{2}=k^{2}=-1, i j=k=-j i, j k=i=-k j, k i=j=-i k$. List all conjugacy classes and all irreducible representations of H
i) over \mathbb{R};
ii) over \mathbb{C}
together with their characters.
(3) Let F be a field. Is F^{n} an injective module over $M_{n}(F)$? Is it projective?
(4) Prove that a morphism in an Abelian category is a monomorphism if and only if its kernel (resp. cokernel) is zero. Give a counterexample in an additive category which is not Abelian.
(5) Give an example of a flat \mathbb{Z}-module N such that $\operatorname{Ext}_{\mathbf{Z}}^{1}(N, \mathbb{Z}) \neq 0$

