ALGEBRA PRELIMINARY EXAM, JUNE 2021

Solve **three** problems from each part below. Full credit requires proving that your answer is correct. You may quote theorems and formulas from the lectures, unless a problem specifically asks you to justify such.

1. PART 1: GROUPS, RINGS AND MODULES

- (1) Show that a group of order 40 is solvable. Exhibit an example of a nonabelian group of order 40.
- (2) Describe the conjugacy classes of S_5 , and compute their sizes.
- (3) Let M be a Noetherian module over a ring R and let $T: M \to M$ be an endomorphism.
 - (a) Assume M is a Noetherian module. Show that if T is surjective, then T is an isomorphism.
 - (b) Find an example to show that the previous item fails without the Noetherian assumption.
- (4) (a) Show that the ring $\mathbb{Z}[\sqrt{-3}]$ is not a unique factorization domain.
 - (b) Show that the ring $\mathbb{Z}[\frac{1+\sqrt{-3}}{2}]$ is an Euclidean domain.
 - (c) Determine the units of $\mathbb{Z}[\sqrt{-3}]$ and $\mathbb{Z}[\frac{1+\sqrt{-3}}{2}]$.
- (5) Let R be a PID.
 - (a) Characterize the finitely generated *R*-modules *M* such that $\operatorname{Hom}_R(M, R) = 0$.
 - (b) Characterize the finitely generated *R*-modules *M* such that $\operatorname{Hom}_R(M, K/R)$ is finitely generated, where *K* is the fraction field of *R*.
 - (c) Find an example of a non-finitely generated R-module M such that $\operatorname{Hom}_R(M, R)$ is finitely generated.

2. Part 2: Linear Algebra and Galois theory

- (1) (a) Find a complete set of representatives for the similarity classes of $A \in M_5(\mathbb{C})$ which has minimal polynomial $(x-1)^2(x+3)$.
 - (b) Suppose $A \in M_n(\mathbb{C})$ such that A has minimal polynomial x^n . Show that any matrix B such that AB = BA is of the form f(A) for some $f \in \mathbb{C}[x]$.
- (2) Let K be the splitting field of $x^3 3$ over \mathbb{Q} .
 - (a) Describe the lattice of intermediate subfields of K.
 - (b) Find a primitive element of K over \mathbb{Q} .
- (3) Let V be an n-dimensional \mathbb{C} -vector space and let $A: V \to V$ be a linear endomorphism.
 - (a) Show that A is nilpotent if and only if there is a filtration $Fil^0 = V \supseteq$ $Fil^1 \supseteq \cdots Fil^n = 0$ such that $A(Fil^i) \subset Fil^{i+1}$.

(b) Define the commutator bracket $[S,T] = S \circ T - T \circ S$ for two endomorphisms S, T of V. Show that if A is nilpotent, then

 $[A, [A, [A, \cdots [A, T] \cdots]] = 0$

where there are 2n A's in the expression.

- (4) (a) Show that $x^{p^n} x$ is the product of all monic irreducible polynomials of $\mathbb{F}_p[x]$ of degree dividing n. (you may use standard facts about the Galois theory of finite fields)
 - (b) Find the number of irreducible monic polynomials of degree 3 in $\mathbb{F}_3[x]$.
- (5) Determine the Galois group of the polynomial $x^4 + 5x^2 + 5$ over \mathbb{Q} and over $\mathbb{Q}(\sqrt{5})$.

3. Part 3: Homological Algebra, commutative algebra and representation theory

- (1) Let M be a left module over a ring A. Prove that the following are equivalent:
 - (a) A is flat as a left A-module;
 - (b) $\operatorname{Hom}_{\mathbb{Z}}(M, \mathbb{Q}/\mathbb{Z})$ is flat as a right A-module.
- (2) Let H be the group of quaternionic units {±1, ±i, ±j, ±k} that satisfy relations i² = j² = k² = -1, ij = k = -ji, jk = i = -kj, ki = j = -ik. List all conjugacy classes and all irreducible representations of H

 i) over ℝ;
 ii) over ℂ

together with their characters.

- (3) Let F be a field. Is F^n an injective module over $M_n(F)$? Is it projective?
- (4) Prove that a morphism in an Abelian category is a monomorphism if and only if its kernel (resp. cokernel) is zero. Give a counterexample in an additive category which is not Abelian.
- (5) Give an example of a flat \mathbb{Z} -module N such that $\operatorname{Ext}_{\mathbf{Z}}^{1}(N,\mathbb{Z}) \neq 0$