
PRELIMINARY EXAM IN ANALYSIS SPRING 2022

Instructions:

(1) There are three parts to this exam: I (Measure Theory), II (Functional Analysis), and III (Complex Analysis).
There are five problems in each part. You should present good solution to three problems from each part:
if you present solutions to more than three problems in a part, the grader will select which three solutions
contribute most to the total grade.

(2) In each problem, full credit requires proving that your answer is correct. You may quote and use theorems
and formulas. If a problem asks you to state or prove a theorem or a formula, you need to provide the full
details. If it asks you to disprove a statement, a counterexample will suffice, again of course with full details.

Part I. Measure Theory. λ denotes Lebesgue measure.

(1) Let fn : [0, 1] → R be a sequence of measurable functions such that fn → f a.e.

(a) Show that for any ϵ > 0 there exists a measurable set Aϵ ⊂ [0, 1] with λ(Aϵ) < ϵ so that fn converges
uniformly to f on X \Aϵ.

(b) Does the above result hold if we replace [0, 1] by R?

(2) (a) State Fatou’s Lemma.

(b) Use Fatou’s Lemma to prove the following. Let (X,F , µ) be a measure space. Let fn be a sequence
of measurable functions such that fn → f a.e. Assume there exists a sequence gn ∈ L1 such that
|fn| ≤ gn, gn → g a.e. and gn → g in L1. Show that

lim
n

∫
fndµ →

∫
fdµ.

(c) Does the above result hold if we assume gn → g in measure instead of L1 convergence?

(3) Let (X,F , µ) be a measure space with µ(X) = 1.

(a) Show that if p < q ≤ ∞ then Lq ⊂ Lp.

(b) Let f ∈ L∞. Prove that the function p → ∥f∥p is monotone and continuous.

(c) Establish the limit limp→0 log ∥f∥p =
∫
log |f |dµ

(4) Suppose f ∈ Lp(R), 1 ≤ p < ∞. For r ∈ R, set Trf(t) = f(t− r). Show that Trf → f in Lp as r → 0.

(5) For f ∈ L1(R) set for x ∈ R

f∗(x) = sup
ϵ>0

[
1

2ϵ

∫ x+ϵ

x−ϵ
|f |dλ

]
.

Show that for any t > 0

λ ({x ∈ R : f∗(x) ≥ t}) ≤ 10∥f∥1
t

.



Part II. Functional Analysis. Notations: f ∗ g(x) =
∫
R f(x− y)g(y)dy, f̂(ξ) =

∫
R f(x)e−2πi⟨x,ξ⟩.

(1) Let f ∈ L2(R, dx) with ||f || = 1 (all norms refer to L2 norms). Let E resp. F be finite measure
subsets of R, and let 1E ,1F be their indicator (characteristic) functions and define the projection operators
PEf = 1Ef, Q̂F f = 1F f̂ . Let m denote Lebesgue measure. Show that:

(a) Show that ||PE ◦QF ||L2→L2 ≤
√
m(E)

√
m(F ).

(b) Show that ||PE ◦QF ||HS =
√

m(E)
√
m(F ).

(c) Suppose that ||(1− 1E)f || < ϵE , and ||(1− 1F )f̂ || < ϵF . Show that m(E)m(F ) ≥ (1− (ϵE + ϵF )).

(2) Suppose that S ⊂ L2([0, 1], dx) is a closed subspace. Suppose that S ⊂ C[0, 1] (continuous functions).
Prove that S is finite dimensional.

(3) Let E be an infinite dimensional separable Hilbert space and let S be its unit sphere. Find the weak closure
of S.

(4) Let D ⊂ R2 be the unit disk. Let 1D be the indicator function of D.

(a) Find the largest s ∈ R so that 1D ∈ Hs(R2).

(b) Let δS1 be the measure δS1(f) =
∫
S1 fdθ where S1 = ∂D is the unit circle and f ∈ C(S1). Find the

largest s so that δS1 ∈ Hs(R2). Find the smallest t so that δS1(f) is a bounded linear functional on
Ht(R2).

(5) Let f ∈ L1(Rn) and let Tfg = f ∗ g for g ∈ L2(Rn).

(a) Prove the following special case of Young’s convolution inequality: ||Tfg||L2 ≤ ||f ||L1 ||g||L2 .

(b) Show that the above inequality is sharp by showing it is achieved if f and g are Gaussian functions
f = g = e−x2/2.

(c) Find ||Tf ||L2→L2 .

(d) Compute the spectrum of Tf and say which subset consists of continuous spectrum and which subset
consists of discrete spectrum.



Part III. Complex Analysis. Below, the terms ‘complex analytic, holomorphic’ are all synonyms.

(1) Consider the analytic polynomial pn(z) = a0 + a1z + · · ·+ an−1z
n−1 + zn. Let

R =
√

|a0|2 + · · ·+ |an−1|2 + 1

and assume R > 1. How many zeros of pn(z) are contained in the open disc D(0, R) centered at 0 of radius
R?

(2) Suppose that p(x) is a positive polynomial (hence, has no real zeros). Compute
∫∞
−∞

dx
p(x) .

(3) Let D = {z : |z| < 1}. If f : D → C is holomorphic and injective and f ′(0) = 1, prove that the area of
f(D) is at least π.

(4) Let {fn} be a sequence of holomorphic functions on D. Suppose that∫
D
|fn(z)|dxdy ≤ 1, ∀n.

Show that {fn} is a normal family.

(5) Let f be a non-constant entire function.

(a) Show that the range of f := f(C) is dense in C.

(b) Show that the range of f := f(C) cannot omit any half-line (i.e. cannot be contained in the complement
of the half-line.)


