Preliminary Examination for Real and Complex Analysis-September, 2003

Part I

Do all three problems (1)-(2)-(3) in this section.

- (1a) Let \mathcal{A} be an algebra of subsets of Ω and let μ be a measure on \mathcal{A} . State the properties of an outer measure and explain how an outer measure is constructed on all subsets of Ω from μ . How are measurable sets defined? Explain how Lebesgue measure is constructed as a special case of this process.
- (1b) Show that the measure space of part (1a) is complete.
- (1c) How is a product measure space defined from two measure spaces? Discuss both the product sigma algebra and the product measure.
- (2) State and prove the Lebesgue Dominated Convergence Theorem. You may use Fatou's lemma.
- (3) Suppose that (f_n) is a uniformly bounded sequence of holomorphic functions in the unit disk U such that $f(z) := \lim_n f_n(z)$ exists for each $z \in U$. Prove that the convergence is uniform on $\{z : |z| \le r\}$ for each r < 1 and that f is holomorphic in U.

Part II

Do either but not both of the problems in this section. Otherwise, only the first problem will be graded.

- (1) Find a counter-example to the complex Stone-Weierstrass theorem if the closure under complex conjugation is not included as an hypothesis.
- (2) Prove Egoroff's theorem:

Let (Ω, Σ, μ) be a measure space, with $\mu(\Omega) < \infty$. Let $\{f^j\}$ be a sequence of complex-valued measurable functions on Ω which is pointwise convergent μ -a.e. to a function f. For each $\epsilon > 0$, there is a set $A \in \Sigma$ such that $\mu(A^c) < \epsilon$ and $\{f^j\}$ converges uniformly to f on A.

Part III

Do either but not both of the problems in this section. Otherwise, only the first problem will be graded.

- (1) State and prove the Hahn-Banach theorem.
- (2) Assume that $1 \leq p < \infty$. Under the assumption that $C_c(\mathbb{R}^n)$ is dense in $L^p(\mathbb{R}^n)$, prove that $L^p(\mathbb{R}^n)$ is separable.

Part IV

Do the single problem in this section.

(1) Let $\Omega := \{z: |z| \neq 1\}, f \in L^1(T), \gamma(t) = e^{it} \text{ for } 0 \leq t \leq 2\pi \text{ and consider the Cauchy integral}$

$$u(z) = \frac{1}{2\pi i} \int_{\gamma} \frac{f(\xi)}{\xi - z} d\xi, \qquad z \in \Omega.$$

- (a) Prove that $u \in H(\Omega)$ with $\lim_{z\to\infty} u(z) = 0$.
- (b) If $f \in C(T)$, prove that $\lim_{z \to e^{i\theta}, |z| < 1} [u(z) u(1/\bar{z})] = f(e^{i\theta})$, uniformly on T.
- (c) If $f \in L^p(T)$ for some $1 \leq p < \infty$, prove that the limit in part (b) takes place in $L^p(T)$.