Department of Mathematics, Northwestern University

Preliminary Examinations in Analysis, Friday September 17, 1999

1. Let $\{X, \mathcal{A}, \mu\}$ be a σ -finite measure space and let $E \in \mathcal{A}$. Prove that for every measurable function $f: E \to \mathbb{R}$ and all p > 0,

$$\int_{E} |f|^{p} d\mu = p \int_{0}^{\infty} t^{p-1} \mu([|f| > t]) dt.$$

2. Let $\{X, \mathcal{A}, \mu\}$ and $\{Y, \mathcal{B}, \nu\}$ be two complete measure spaces and let $f \in L^p(X \times Y)$ for some $p \geq 1$. Prove that,

$$\left(\int_X \left| \int_Y f(x,y) \, d\nu \right|^p d\mu \right)^{1/p} \leq \int_Y \|f(\cdot,y)\|_{p,X} \, d\nu.$$

- **3.** Let $\{f_n\} \to f$ weakly in $L^p(E)$ for $p \in (1,\infty)$, and assume that $\|f_n\|_p \to \alpha$ for some $\alpha > 0$. If $\|f\|_p = \alpha$, then $\{f_n\} \to f$ strongly in $L^p(E)$. Prove this statement for p = 2. If $\|f\|_p \neq \alpha$, then the conclusion is false. Give a counterexample.
- 4. Let {X, A, μ} be a measure space and let E ∈ A be of finite measure. Prove that almost everywhere convergence in E implies convergence in measure. This is false if E is not of finite measure. Give a counterexample.
- 5. The Legendre transform f^* of a convex function $f: \mathbb{R}^N \to \mathbb{R}$ is defined by,

$$f^*(x) = \sup_{y \in \mathbb{R}^N} \{x \cdot y - f(y)\}.$$

Prove that f^* is convex.

6. Let $f: \mathbb{R}^N \to \mathbb{R}$ be convex and satisfying the growth condition,

$$\lim_{|x| \to \infty} \frac{f(x)}{|x|} = \infty.$$

Prove that f^* satisfies the same growth condition as $|x| \to \infty$.