Geometry Prelim Exam Sept. 17, 1997

Work six of the following problems

Please list the six you want graded on the front of your blue book

 $oldsymbol{\wedge}$. Define chart, atlas and manifold. Define C^{∞} function from one manifold to another and define diffeomorphism.

If $f: M \to N$ is a C^{∞} function from the manifold M to the manifold $N \setminus M$ prove that its graph $G = \{(x, f(x)) \in M \times N | x \in M\}$ has the structure of a manifold and that it is diffeomorphic to M.

- \mathcal{L} . Define critical point and critical value of a smooth function. State Sard's Theorem. Consider two C^{∞} functions $f: \mathbb{R} \to \mathbb{R}$ and $g: S^1 \to S^1$. Is it possible that the set of critical values of f is dense in \mathbb{R} or that the set of critical values of f is dense in f or that the set of critical values of f is not possible or construct an example.
- 3. Define transversal intersection of two submanifolds.

Suppose M^m and N^n are compact manifolds of dimension m and n respectively. Let $f: M \to N$ be a C^∞ function and suppose $y \in N$ is a regular value of f. Let $W = f^{-1}(y)$ so that W is a submanifold of M. Assume W is non-empty. If V is a submanifold of M which has a non-empty transverse intersection with W then give upper and lower bounds (in terms of m and n) on the possible dimension of V. Justify your answer. Give an example to show that at least one of these bounds is not valid if $W = f^{-1}(y)$ is a submanifold of M but $y \in N$ is not a regular value of f.

(a) State Stokes' Theorem for differential forms on a manifold.

(b) Prove that Green's Theorem in the plane is a corollary of Stokes' theorem as you stated it. Green's theorem asserts that for a smooth simple closed curve C bounding a region D in the plane and for smooth functions P(x,y), Q(x,y).

$$\int_{C} P dx + Q dy = \int \int_{D} \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} dx dy.$$

6. For a surface M in R^3 the Levi-Civita connection is defined by $D_XY = D_XY + (L(X), Y)$ where X and Y are tangent vector fields to M and $D_XY = (X(y_1), X(y_2), X(y_3))$ if $Y = (y_1, y_2, y_3)$. Prove that D_XY is also tangent to the surface M.

Let M be a smooth two dimensional submanifold of \mathbb{R}^3 with the induced Riemannian metric and let $\gamma(t)$, $t \in [0,1]$ be a smooth curve in M. Prove a tangent vector field Y is parallel along γ if and only if $\frac{dY}{dt}$ is normal to M.

FIRMER

(Lycum to gather

LANGULAN OF WHEAL

THUR WASTEREL

LONG