
PRELIMINARY EXAM IN GEOMETRY AND TOPOLOGY SPRING 2020

Instructions:

(1) There are three parts to this exam: I (Differentiable Topology), II (Algebraic Topology), and III
(Differentiable Geometry). There are five problems in each part. You should present solutions to
three problems from each part: if you present solutions to more than three problems in a part, the
grader will select which three solutions contribute most to the total grade.

(2) In each problem, full credit requires proving that your answer is correct. You may quote and use
theorems and formulas. If a problem asks you to state or prove a theorem or a formula, you need
to provide the full details. If it asks you to disprove a statement, a counterexample will suffice,
again of course with full details.

Part I. Differentiable Topology

(1) Consider the Grassmannian of complex k-planes in Cn. (Recall that, as a space, Grk(C
n) is topolo-

gized as the quotient of the Stiefel manifold Vk(C
n) of orthonormal k-frames in Cn, where the map

Vk(C
n)→ Grk(C

n) sends a k-frame to the k-dimensional subspace it spans.)

(a) Is Grk(C
n) compact or noncompact? Prove your answer.

(b) What is the dimension of Grk(C
n)? Prove your answer.

(2) The oriented Grassmannian G̃rk(R
n) of k-planes in Rn is the set of oriented k-dimensional linear

subspacesof Rn, topologized as the quotient of the Stiefel manifold of k-frames Vk(R
n). Calculate

the Euler characteristic of the oriented Grassmannian G̃rn−1(R
n) for all n.

(3) (a) Let M be an odd-dimensional compact manifold with boundary ∂M. Prove that the Euler
characteristic of the boundary is double that of M:

2 · χ(M) = χ(∂M)

(b) Assuming the above, give an example of a 2n-dimensional manifold N which is not the
boundary of any (2n + 1)-dimensional manifold M.

(4) Prove that a function M → R is Morse if and only if d f : M → T∗M is transverse to the zero-
section.

(5) Let f (x0, x1, . . . , xn) be a degree d homogenous polynomial in n + 1 complex variables over the
complex numbers C. Prove that the image of the zero-set of f defines a smooth submanifold of
CPn.



Part II. Algebraic Topology

(1) Let Tn = S1 × · · · × S1 be the product of the circle with itself n-times. What is the fundamental
group of Tn? What is the universal cover of Tn? Suppose X is a CW complex with finite funda-
mental group. Show any continuous map X → Tn is null-homotopic.

(2) The torus T = T2, embedded in R3 in the standard way, bounds a compact region R . Two copies
of R, glued together by the identity map between their boundary surfaces T, form a closed 3-
manifold X . Compute the cohomology groups H∗(X, Z) via the Mayer-Vietoris sequence for this
decomposition of X into two copies of R. Now use Poincaré duality to compute the cohomology
ring.

(3) Let n be an even number and Sn ∨ Sn the one-point union of two n-spheres. Let ∇ : Sn ∨ Sn → Sn

be the unique continuous map which is the identity of each copy on Sn and let f : S2n−1 → Sn ∨ Sn

be the attaching map needed for the standard CW decomposition of Sn × Sn. Now let h = ∇ ◦ f :
S2n−1 → Sn and define

X = Sn ∪h D2n

to be the space obtained by attaching a 2n-cell using h. Calculate the cohomology ring H∗(X, Z).
Note there is a continuous map Sn × Sn → X.

(4) Let CPn be complex projective space. Show there is an orientation reversing homeomorphism
f : CPn → CPn if and only if n is odd.

(5) Let X be a topological space and C•(X) the singular chain complex of X. Let ϕ : C•(X) → C•(X)
be any natural chain map. Show that there is an integer n so that ϕ is chain homotopic to multi-
plication by n.



Part III. Differential Geometry

(1) Let M be a compact, connected orientable manifold of dimension n ≥ 2, and p ∈ M. Suppose you
know the de Rham cohomology groups of M, determine those of M \ {p}.

(2) (a) Let M be a smooth connected manifold of dimension 2n. We say that a 2-form ω on M is
symplectic if dω = 0 and ω ∧ . . . ∧ω is a nowhere vanishing 2n-form on M. Show that if M is
compact with no boundary then no symplectic form ω on M is exact.

(b) Conclude that spheres S2n of dimension 2n, n > 1, do not admit symplectic forms.

(3) Let (M, g) be a Riemannian manifold and ∇ be the Levi-Civita connection associated to g.

(a) Define the covariant derivative D associated to ∇.

(b) Show that if V, W are vector fields along a smooth curve γ then
d
dt
〈V, W〉 = 〈DV

dt
, W〉+ 〈V,

DW
dt
〉.

(c) Let X, Y be vector fields, p ∈ M and γ : [a, b]→ M a curve such that γ′(t0) = X(p), t0 ∈ (a, b).
Show that

∇XY(p) =
d
dt

P−1
γ,t0,t(Y(γ(t)))

∣∣∣∣
t=t0

,

where Pγ,s,t : Tγ(s)M→ Tγ(t)M is the parallel transport along γ from s to t.

(4) (a) State the Hopf-Rinow theorem concerning the relation between completeness and the expo-
nential maps of a Riemannian manifold.

(b) Suppose M is a complete Riemannian manifold. Show that M is compact if and only if the
diameter of M

diam(M) = sup{d(p, q) : p, q ∈ M}
is finite.

(5) Let γ : [a, b]→ M be a curve on a Riemannian manifold M.

(a) Write down the definition of the energy E(γ).

(b) Let V be a smooth vector field along γ. Consider a smooth variation of γ given by F : [a, b]×
(−ε, ε) → M with F(t, 0) = γ(t) and ∂

∂s γ(t, s) = V. Write γs(t) = F(t, s). Assume that
F(a, s) = γ(a) and F(b, s) = γ(b) for all s ∈ (−ε, ε). Show that

∂

∂s
E(γs)

∣∣∣∣
s=0

=
∫ b

a
〈V,

D
dt

dγ

dt
〉dt.

(c) Assume that γ is a critical point of E. Conclude that dγ
dt is parallel along γ.


