Preliminary Exam in Geometry and Topology Spring 2021

Instructions: (1) There are three parts to this exam. Do three problems from each part. If you attempt more than three, then indicate which you would like graded; otherwise we will grade the first three you attempt in each section.
(2) In each problem, full credit requires proving that your answer is correct. You may quote and use theorems and formulas. But if a problem asks you to state or prove a theorem or a formula, you need to provide the full details.

Part I. Differentiable Topology and the Fundamental Group

Do three of the following five problems.
(1) For this question, you may make use of any standard results, so long as they are referenced explicitly.
(a) Identify the Klein bottle K as quotient of a polygon.
(b) Compute the fundamental group

$$
\pi_{1} K
$$

in terms of generators and relations.
(c) Calculate the Euler characteristic $\chi(K)$.
(2) Let K again be the Klein bottle.
(a) Construct a double covering map $\mathbb{T}^{2} \rightarrow K$ from the torus to the Klein bottle.
(b) Compute the induced map on fundamental groups

$$
\pi_{1} \mathbb{T}^{2} \rightarrow \pi_{1} K
$$

in terms of your presentation of $\pi_{1} K$.
(3) Prove the following result: ${ }^{1}$ If (X, d) is a complete metric space, every contraction $f: X \rightarrow X$ has a unique fixed point. (Recall that a mapping $f: X \rightarrow X$ is a contraction if there exists a real number $a<1$ such that the inequality

$$
d(f(x), f(y))<a \cdot d(x, y)
$$

holds for every pair of distinct points x and y in X.)
(4) Consider the unitary group $\mathrm{U}(n)$.
(a) Prove that $\mathrm{U}(n)$ is a connected topological space.
(b) Prove that $\mathrm{U}(2)$ is a product of spheres.
(c) Calculate $\pi_{1} \mathrm{U}(n)$ for all n.
(5) Consider $\mathrm{SO}(n)$ is the special orthogonal group.

[^0](a) Prove that the universal cover of $\mathrm{SO}(4)$ is a product of spheres.
(b) Calculate the fundamental group $\pi_{1} \mathrm{SO}(4)$.
(c) Calculate the homology $\mathrm{H}_{*}(\mathrm{SO}(4), \mathbb{Z})$.

Part II. Algebraic Topology

Do three of the following five problems.
(1) Let $\phi: C_{\bullet} X \rightarrow C_{\bullet} X$ be a natural chain map on the chain complex of singular simplices of X. Suppose $\phi: C_{0} X \rightarrow C_{0} X$ is the identity. Show ϕ is chain homotopic to the identity.
(2) Let $f: X \rightarrow X$ be a self-map and define the mapping torus T_{f} of f to the quotient space of $X \times[0,1]$ obtained by identifying $(x, 0)$ with $(f(x), 1)$. Show there is a long exact sequence in homology
$\longrightarrow H_{n} X \oplus H_{n} X \xrightarrow{\Phi} H_{n} X \oplus H_{n} X \longrightarrow H_{n} T_{f} \longrightarrow H_{n} X \oplus H_{n} X \longrightarrow$
where $\Phi(a, b)=\left(a+b, a+f_{*} b\right)$. Use this to calculate $H_{*} T_{f}$ where $f: S^{1} \rightarrow S^{1}$ is a degree n map.
(3) Let $f: X \rightarrow Y$ be a map of finite connected CW complexes. Here "finite" means that it has finitely many cells. Prove that if $f_{*}: H_{*}(X, \mathbb{Z} / p) \rightarrow H_{*}(Y, \mathbb{Z} / p)$ is an isomorphism for all primes p, then $f_{*}: H_{*}(X, \mathbb{Z}) \rightarrow H_{*}(Y, \mathbb{Z})$ is an isomorphism.
(4) Prove CP^{n} cannot be a topological group if $n<\infty$. To do this, notice that if it were, there would be a multiplication $m: \mathbb{C P}^{n} \times \mathbb{C P}^{n} \rightarrow \mathbb{C P}^{n}$ and an identity element $e \in \mathbb{C P}^{n}$. The map

$$
\{e\} \times \mathrm{CP}^{n} \xrightarrow{\subseteq} \mathbb{C P}^{n} \times \mathbb{C P}^{n} \xrightarrow{m} \mathbb{C P}^{n}
$$

would be the identity, and similarly for the inclusion of $\mathbb{C} P^{n} \times\{e\}$. Now make some cohomology calculations.
(5) Let T_{n} denote the n-holed torus. Show there is a map $f: T_{n} \rightarrow T_{m}$ with the property that $f: H_{2} T_{n} \rightarrow H_{2} T_{m}$ is an isomorphism if and only if $n \geq m$.

Part III. Differential Topology and Geometry

Do three of the following five problems.
(1) (a) State the Inverse Function Theorem.
(b) State Sard's theorem.
(c) State the Stokes theorem.
(2) Consider the Stiefel manifold $\mathrm{V}_{k}\left(\mathbb{R}^{n}\right)$ of orthonormal k-frames $\left\{x_{1}, \ldots, x_{k}\right\}$ in \mathbb{R}^{n}, topologized as a subspace of $\left(\mathbb{R}^{n}\right)^{k}$. Give a complete calculation of the Euler characteristic

$$
\chi\left(\mathrm{V}_{k}\left(\mathbb{R}^{n}\right)\right)
$$

for all n and k. Prove your answer.
(3) Determine the set of isomorphism classes of 3-dimensional real vector bundles on $\mathbb{R P}^{3}$.
(4) Consider the upper half plane $\mathbb{H}=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2} \mid x_{2}>0\right\}$ with the hyperbolic metric

$$
\begin{gathered}
g_{11}=g_{22}=\frac{1}{x_{2}^{2}} \\
g_{12}=0 .
\end{gathered}
$$

(a) Write the general Christoffel identies, an equation expressing the Christoffel symbols $\Gamma_{i j}^{k}$ in terms of the metric $g_{i j}$.
(b) Calculate the Christoffel symbols $\Gamma_{i j}^{k}$ for the associated Levi-Civita connection on \mathbb{H}.
(5) (a) Write the geodesic equation in terms of the Christoffel symbols, expressing the condition for a smooth parametrized curve $\gamma(t)=\left(u_{1}(t), \ldots, u_{n}(t)\right.$ to be a geodesic.
(b) Consider the upper half plane $\mathbb{H}=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2} \mid x_{2}>0\right\}$ with the hyperbolic metric $g_{11}=g_{22}=\frac{1}{x_{2}^{2}}$ and $g_{12}=0$. Prove that for each constant r, the semi-circle of radius r parametrized as

$$
\begin{gathered}
x_{1}(t)=-r \cdot \tanh (t) \\
x_{2}(t)=r \cdot \operatorname{sech}(t)
\end{gathered}
$$

is a geodesic in $\mathbb{H}^{2}{ }^{2}$

[^1]
[^0]: ${ }^{1}$ As you may recall, this is used in the proof the inverse function theorem.

[^1]: ${ }^{2}$ Recall $\tanh (t)=\frac{e^{t}-e^{-t}}{e^{t}+e^{-t}}$ and $\operatorname{sech}(t)=\frac{2}{e^{t}+e^{-t}}$.

