Topology Preliminary Exam, February 1997

Do 6 of 8 problems. Be sure to indicate which problems you are submitting.

- (1) Let M be a smooth (C[∞]) compact n dimensional submanifold of R²ⁿ⁺².
 (a) Prove that there exists a 2n+1 dimensional linear subspace H of R²ⁿ⁺² such that the orthogonal projection P : R²ⁿ⁺² → H has the property that P restricted to M is one-to-one.
 (b) Prove that, in addition to the property from part (a), H can be chosen so that for every x ∈ M, the derivative dP_x : TM_x → TH_{P(x)} is one-to-one, that is, so P defines an embedding of M into H.
- (2) Show that there does **not** exist a continuous function $f : \mathbb{C}P^2 \to S^2 \times S^2$ which induces an isomorphism of integral homology groups in dimension four:

$$f_*: H_4(\mathbb{C}P^2; \mathbb{Z}) \xrightarrow{\approx} H_4(S^2 \times S^2; \mathbb{Z}).$$

- (3) Let K be a knot in \mathbb{R}^3 , that is, a subset of \mathbb{R}^3 which is homeomorphic to the circle (or 1-sphere) S^1 . View the 3-sphere S^3 as the one-point compactification of \mathbb{R}^3 .
 - (a) Show that $\mathbb{R}^3 \setminus K$ is path connected.
 - (b) Show that the inclusion $i: \mathbb{R}^3 \setminus K \to S^3 \setminus K$ induces an isomorphism of fundamental groups.
- (4) Let D^n be the unit disk in \mathbb{R}^n and S^{n-1} its boundary, the unit (n-1)-sphere. Suppose $f: D^n \to \mathbb{R}^n$ is a continous function which the identity on S^{n-1} and is locally one-to-one on the *interior* of D^n . Show that f maps the interior of D^n onto the interior of D^n . Comment: f is also one-to-one, but you need not prove this.
- (5) Give an example of two connected finite CW-complexes K and L which are not acyclic and such that the inclusion of the wedge $K \vee L$ into the Cartesian product $K \times L$ induces and isomorphism of integral homology groups

$$f_*: H_n(K \lor L; \mathbf{Z}) \xrightarrow{\approx} H_n(K \times L; \mathbf{Z})$$

in all dimensions $n \ge 0$. Explain *briefly* why your example satisfies the requirement.

(6) Let K be a finite CW-complex of dimension n. Let α_p be the number of p-cells of K and let β_p be the p-th betti number, the rank of $H_p(K; \mathbb{Z})$. Give a proof that

$$\sum_{p=0}^{n} (-1)^{p} \alpha_{p} = \sum_{p=0}^{n} (-1)^{p} \beta_{p}.$$

Remark: Of course, this number is the Euler Characteristic $\chi(K)$.

- (7) Let M be a compact connected n-manifold such that $H_1(M; \mathbb{Z}/2\mathbb{Z}) = 0$. Prove that M is orientable.
- (8) Let $p: S^n \to \mathbb{R}P^n$ be the standard covering map of the real projective plane of dimension n by the *n*-sphere. Prove that p is not homotopic to a constant map.