NAME: \qquad

WILLIAM LOWELL PUTNAM MATHEMATICAL COMPETITION

Problem A1. Find the integer values of x for which the following function takes integer values:

$$
f(x)=\frac{x^{2}}{x+3}
$$

NAME: \qquad
WILLIAM LOWELL PUTNAM MATHEMATICAL COMPETITION

Problem A2. On a table there are 100 tokens. Taking turns two players remove 5, 6, 7, 8, 9 or 10 tokens, at their choice. The player that removes the last token wins. Find a winning strategy and determine which player will be the winner.

NAME: \qquad

WILLIAM LOWELL PUTNAM MATHEMATICAL COMPETITION

Problem A3. In a group of n people $(n \geq 2)$ each person picks another person at random and, at the sound of "now!", throws a pie to him/her. Assume that all pies have the same probability p of hitting their target, and if the pie misses its intended target it does not hit anybody else. What is the expected number of people not hit by a pie?

NAME: \qquad
WILLIAM LOWELL PUTNAM MATHEMATICAL COMPETITION

Problem A4. If $x \neq 0$ prove that $\quad \frac{\sin x}{x}=\prod_{n=1}^{\infty} \cos \left(\frac{x}{2^{n}}\right)$.

NAME: \qquad

WILLIAM LOWELL PUTNAM MATHEMATICAL COMPETITION

Problem A5. In the figure $O P$ is the bisector of angle $R O S$. Prove than $1 /|O R|+1 /|O S|=$ $1 /\left|O R^{\prime}\right|+1 /\left|O S^{\prime}\right|$.

NAME: \qquad
WILLIAM LOWELL PUTNAM MATHEMATICAL COMPETITION

Problem A6. We have a calculator with two registers R_{1} and R_{2}, and four operations:
(1) $R_{1}+R_{2} \rightarrow R_{2}$ (add the content of register R_{1} to register R_{2}.)
(2) $-R_{1}+R_{2} \rightarrow R_{2}$ (subtract the content of register R_{1} from register R_{2}.)
(3) $R_{1}+R_{2} \rightarrow R_{1}$ (add the content of register R_{2} to register R_{1}.)
(4) $R_{1}-R_{2} \rightarrow R_{1}$ (subtract the content of register R_{2} from register R_{1}.)

For instance, if $R_{1}=x$ (register R_{1} contains the number x) and $R_{2}=y\left(R_{2}\right.$ contains y), after applying the operation $R_{1}+R_{2} \rightarrow R_{2}$ we end up with $R_{1}=x$ and $R_{2}=x+y$. Assume that initially we have $R_{1}=x$ and $R_{2}=y$, where x and y are arbitrary numbers. For each of the following tasks describe a sequence of operations that would allow us to perform the task, or prove that it is impossible:
(1) Swap the contents of registers R_{1} and R_{2} changing the sign of y in the process, so we would end up with $R_{1}=-y, R_{2}=x$.
(2) Swap the contents of registers R_{1} and R_{2}, so that we would end up with $R_{1}=y$, $R_{2}=x$.

