WILLIAM LOWELL PUTNAM MATHEMATICAL COMPETITION

Problem A1. Find all positive integers x, y such that $4^x + 5 = 9^y$.

Answer:

We will prove that the only solution is x = y = 1.

* *Method 1*: We have

 $9^{y} - 4^{x} = 3^{2y} - 2^{2x} = (3^{y} + 2^{x})(3^{y} - 2^{x}) = 5,$

hence $3^y + 2^x \le 5$, and the only positive values of x, y that verify this inequality are x = y = 1.

* Method 2: We have that $4^x \equiv 0 \pmod{8}$ for $x \ge 2$, and $9^y \equiv 1 \pmod{8}$ for every y. Since $0+5 \not\equiv 1 \pmod{8}$, the only possibility is x = 1, and y = 1.

NAME: _

WILLIAM LOWELL PUTNAM MATHEMATICAL COMPETITION

Problem A2. Prove that from any point inside an equilateral triangle, the sum of the measures of the distances to the sides of the triangle is constant.

Answer:

Let P be a point inside an equilateral triangle ABC. Let d_A, d_B, d_C the distance from P to the side opposed to A, B, C respectively, and assume |AB| = |BC| = |CA| = s. The area S of the triangle equals the sum of the areas of the three triangles APB, BPC and CPA respectively, i.e.

$$S = \frac{1}{2} |BC| h_A + \frac{1}{2} |CA| h_B + \frac{1}{2} |AB| h_C$$

= $\frac{s}{2} (h_A + h_B + h_C),$

hence $h_A + h_B + h_C = 2S/s = \text{constant}$.

WILLIAM LOWELL PUTNAM MATHEMATICAL COMPETITION

Problem A3. Let a, b, c, d > 0. Prove that

$$\frac{1}{a} + \frac{1}{b} + \frac{4}{c} + \frac{16}{d} \ge \frac{64}{a+b+c+d}.$$

Answer:

For x, y > 0 we have

$$0 \le (x-y)^2 = (x+y)^2 - 4xy \implies \frac{1}{x} + \frac{1}{y} \ge \frac{4}{x+y},$$

hence:

$$\frac{1}{a} + \frac{1}{b} + \frac{4}{c} + \frac{16}{d} \ge \frac{4}{a+b} + \frac{4}{c} + \frac{16}{d} \ge \frac{16}{a+b+c} + \frac{16}{d} \ge \frac{64}{a+b+c+d} \,.$$

WILLIAM LOWELL PUTNAM MATHEMATICAL COMPETITION

Problem A4. Find
$$\lim_{n\to\infty}\prod_{k=0}^n\left(1+\frac{1}{3^{2^k}}\right)$$
.

Answer:

If we call the product P_n we have

$$\begin{pmatrix} 1 - \frac{1}{3} \end{pmatrix} P_n = \begin{pmatrix} 1 - \frac{1}{3} \end{pmatrix} \begin{pmatrix} 1 + \frac{1}{3} \end{pmatrix} \begin{pmatrix} 1 + \frac{1}{3^2} \end{pmatrix} \dots \begin{pmatrix} 1 + \frac{1}{3^{2^n}} \end{pmatrix}$$
$$= \begin{pmatrix} 1 - \frac{1}{3^2} \end{pmatrix} \begin{pmatrix} 1 + \frac{1}{3^2} \end{pmatrix} \dots \begin{pmatrix} 1 + \frac{1}{3^{2^n}} \end{pmatrix}$$
$$\dots$$
$$= \begin{pmatrix} 1 - \frac{1}{3^{2^{n+1}}} \end{pmatrix} \xrightarrow[n \to \infty]{} 1.$$
$$e \lim_{n \to \infty} P_n = \begin{pmatrix} 1 - \frac{1}{3} \end{pmatrix}^{-1} = \boxed{\frac{3}{2}}.$$

Hence

WILLIAM LOWELL PUTNAM MATHEMATICAL COMPETITION

Problem A5. Prove that if a, b are two positive integers and \sqrt{a} is irrational then $\sqrt{a} + \sqrt{b}$ is irrational.

Answer:

Calling $r = \sqrt{a} + \sqrt{b}$, we have $\sqrt{a} = \frac{1}{2}\left(r + \frac{a-b}{r}\right)$. So if r were rational so would be \sqrt{a} , contradicting the hypothesis.

WILLIAM LOWELL PUTNAM MATHEMATICAL COMPETITION

Problem A6. Prove that in the following product

 $P = (1 - x + x^{2} - x^{3} + \dots - x^{99} + x^{100})(1 + x + x^{2} + x^{3} + \dots + x^{99} + x^{100})$

after multiplying and collecting terms, there does not appear a term in x of odd degree.

Answer:

Let p(x) and q(x) be the following polynomials:

 $p(x) = 1 + x^2 + x^4 + \dots + x^{98} + x^{100}, \quad q(x) = 1 + x^2 + x^4 + \dots + x^{98}.$

Then the given product can be written:

$$P = [p(x) - x q(x)][p(x) + x q(x)]$$

= $[p(x)]^2 - x^2 [q(x)]^2$.

That expression contains only even powers of x.