WILLIAM LOWELL PUTNAM MATHEMATICAL COMPETITION

Problem A1. Find all positive integers x, y such that $4^x + 5 = 9^y$.

WILLIAM LOWELL PUTNAM MATHEMATICAL COMPETITION

Problem A2. Prove that from any point inside an equilateral triangle, the sum of the measures of the distances to the sides of the triangle is constant.

WILLIAM LOWELL PUTNAM MATHEMATICAL COMPETITION

Problem A3. Let a, b, c, d > 0. Prove that

$$\frac{1}{a} + \frac{1}{b} + \frac{4}{c} + \frac{16}{d} \ge \frac{64}{a+b+c+d}.$$

WILLIAM LOWELL PUTNAM MATHEMATICAL COMPETITION

Problem A4. Find $\lim_{n\to\infty}\prod_{k=0}^n\left(1+\frac{1}{3^{2^k}}\right)$.

WILLIAM LOWELL PUTNAM MATHEMATICAL COMPETITION

Problem A5. Prove that if a, b are two positive integers and \sqrt{a} is irrational then $\sqrt{a} + \sqrt{b}$ is irrational.

WILLIAM LOWELL PUTNAM MATHEMATICAL COMPETITION

Problem A6. Prove that in the following product

 $P = (1 - x + x^{2} - x^{3} + \dots - x^{99} + x^{100})(1 + x + x^{2} + x^{3} + \dots + x^{99} + x^{100})$

after multiplying and collecting terms, there does not appear a term in x of odd degree.