NAME: \qquad
WILLIAM LOWELL PUTNAM MATHEMATICAL COMPETITION

Problem B1. Prove that there are no rational numbers u, v, w such that $u^{2}+v^{2}+w^{2}=7$.

NAME: \qquad

WILLIAM LOWELL PUTNAM MATHEMATICAL COMPETITION

Problem B2. Let $a_{1}, a_{2}, \ldots, a_{n}$ be a sequence of positive numbers. Show that for all positive x,

$$
\left(x+a_{1}\right)\left(x+a_{2}\right) \ldots\left(x+a_{n}\right) \leq\left(x+\frac{a_{1}+a_{2}+\cdots+a_{n}}{n}\right)^{n}
$$

NAME: \qquad
WILLIAM LOWELL PUTNAM MATHEMATICAL COMPETITION

Problem B3. Let m be an odd positive integer. Prove that there is a positive integer n such that $2^{n}-1$ is divisible by m.

NAME: \qquad

WILLIAM LOWELL PUTNAM MATHEMATICAL COMPETITION

Problem B4.

(1) In a 120×150 rectangle (made out of unit squares joined along their sides), how many unit squares does its diagonal pass through?
(2) In a $120 \times 150 \times 180$ cuboid (made out of unit cubes joined along their faces), how many unit cubes does its diagonal pass through?
(Just "touching" at one point does not qualify as passing through).

NAME: \qquad

WILLIAM LOWELL PUTNAM MATHEMATICAL COMPETITION

Problem B5. Let S be a set of real numbers which is closed under multiplication (that is, if a and b are in S, then so is $a b$). Let T and U be disjoint subsets of S whose union is S. Given that the product of any three (not necessarily distinct) elements of T is in T and the product of any three elements of U is in U, show that at least one of the subsets T, U is closed under multiplication.

NAME: \qquad
WILLIAM LOWELL PUTNAM MATHEMATICAL COMPETITION

Problem B6. For positive integers n, define S_{n} to be the minimum value of the sum

$$
\sum_{k=1}^{n} \sqrt{(2 k-1)^{2}+a_{k}^{2}}
$$

as the $a_{1}, a_{2}, \ldots, a_{n}$ range through all positive real values such that

$$
a_{1}+a_{2}+\cdots+a_{n}=17 .
$$

Find S_{10}.

