NAME: \qquad

WILLIAM LOWELL PUTNAM MATHEMATICAL COMPETITION

Problem A1. Determine the sum of the coefficients of the polynomial that is obtained if we expand the expression $\left(1+x-3 x^{2}\right)^{2005}$ and reduce like terms.

Answer:

The sum of the coefficients of a polynomial $p(x)$ is just $p(1)$, so the answer is the result of replazing x with 1 in $\left(1+x-3 x^{2}\right)^{2005}$:

$$
(1+1-3)^{2005}=(-1)^{2005}=-1 .
$$

NAME: \qquad

WILLIAM LOWELL PUTNAM MATHEMATICAL COMPETITION

Problem A2. The Fibonacci sequence $0,1,1,2,3,5,8,13, \ldots$ is defined as a sequence whose two first terms are $F_{0}=0, F_{1}=1$, and each subsequent term is the sum of the two previous ones: $F_{n}=F_{n-1}+F_{n-2}$ (for $n \geq 2$). Prove that $F_{10^{k}}$ is odd for every $k \geq 0$.

Answer:
We have that F_{n} is even precisely when F_{n-1} and F_{n-2} have the same parity, because the sum of two even numbers or two odd numbers is even. If F_{n-1} and F_{n-2} have different parity then F_{n} will be odd. Consequently the sequence of parities of F_{n} is of the form even, odd, odd, even, odd, odd,\ldots with period 3 . Since $10^{k} \equiv 1(\bmod 3), F_{10^{k}}$ will have the same parity as F_{1}, i.e., odd.

NAME: \qquad
WILLIAM LOWELL PUTNAM MATHEMATICAL COMPETITION

Problem A3. Find the product $\prod_{n=2}^{2005}\left(1-\frac{1}{n^{2}}\right)$.
Answer:
For each natural number we have $1-\frac{1}{n^{2}}=\frac{(n-1)(n+1)}{n^{2}}$. Hence the product telescopes:

$$
\begin{aligned}
\prod_{n=2}^{2005}\left(1-\frac{1}{n^{2}}\right) & =\left(1-\frac{1}{2^{2}}\right)\left(1-\frac{1}{3^{2}}\right) \cdots\left(1-\frac{1}{n^{2}}\right) \\
& =\frac{1 \cdot 3}{2^{2}} \cdot \frac{2 \cdot 4}{3^{2}} \cdot \frac{3 \cdot 5}{4^{2}} \cdots \frac{2003 \cdot 2005}{2004^{2}} \cdot \frac{2004 \cdot 2006}{2005^{2}} \\
& =\frac{1}{2} \cdot \frac{2006}{2005}=\frac{1003}{2005} .
\end{aligned}
$$

NAME: \qquad

WILLIAM LOWELL PUTNAM MATHEMATICAL COMPETITION

Problem A4. Find the minimum value of $f(x, y, z)=\sqrt{x+y+z}$ subject to the constrains $x, y, z>0, \frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1$.

Answer:
By the Harmonic Mean-Arithmetic Mean inequality we have:

$$
3=\frac{3}{\frac{1}{x}+\frac{1}{y}+\frac{1}{z}} \leq \frac{x+y+z}{3}=\frac{1}{3} f(x, y, z)^{2} .
$$

Hence $f(x, y, x) \geq \sqrt{9}=3$. On the other hand $f(3,3,3)=3$, so the minimum is 3 .

NAME: \qquad
WILLIAM LOWELL PUTNAM MATHEMATICAL COMPETITION

Problem A5. Find the value of the following infinite tower of exponents:

$$
\sqrt{2}^{\sqrt{2} \sqrt{2} \sqrt{2}}
$$

interpreted as the limit of the infinite sequence $1, \sqrt{2}, \sqrt{2}^{\sqrt{2}}, \sqrt{2}^{\sqrt{2}^{\sqrt{2}}}, \ldots$,
Answer:
In this problem the "difficult" part is to prove that the given sequence has a limit x, after that we easily see that the limit must verify the equation

$$
x=2^{x / 2},
$$

and from here we find that the limit is $x=2$.
Here is a detailed proof:
The problem asks for the limit of the sequence recursively defined $x_{0}=1, x_{n+1}=(\sqrt{2})^{x_{n}}$ for $n \geq 0$. So first we must make sure that the sequence has a limit. To that end we use the Monotonic Sequence Theorem: every bounded monotonic (e.g., increasing) sequence is convergent.

So we first prove that the sequence is bounded, more specifically $0<x_{n}<2$ for every n. By induction, the base case is $0<x_{0}=1<2$. Next assume that $0<x_{n}<2$, then $0<x_{n+1}=2^{x_{n} / 2}<2^{1}=2$.

Next we prove that it is increasing, i.e., $x_{n}<x_{n+1}$ for every n. We can do it also by induction. The base case is $x_{0}=1<\sqrt{2}=x_{2}$. Next assume $x_{n}<x_{n+1}$, i.e., $x_{n+1}-x_{n}>0$. Then $x_{n+2} / x_{n+1}=2^{x_{n+1}} / 2^{x_{n}}=2^{x_{n+1}-x_{n}}>1$, hence $x_{n+1}<x_{n+2}$.

So, by the MST the sequence has a limit. Call it x. Then taking limits as $n \rightarrow \infty$ in $x_{n+1}=2^{x_{n} / 2}$ we get $x=2^{x / 2}$, satisfied by $x=2$. Since the limit is unique, this must be the answer:

$$
\lim _{n \rightarrow \infty} x_{n}=2
$$

NAME: \qquad

WILLIAM LOWELL PUTNAM MATHEMATICAL COMPETITION

Problem A6. $\overline{R S}$ is the diameter of a semicircle. Two smaller semicircles, $\overparen{R T}$ and $\widehat{T S}$, are drawn on $\overline{R S}$, and their common internal tangent $\overline{A T}$ intersects the large semicircle at A, as shown in the figure. Find the ratio of the area of a semicircle with radius $\overline{A T}$ to the area of the shaded region.

Answer:
If d is the diameter of a semicircle, then its area is $\frac{1}{2} \pi\left(\frac{d}{2}\right)^{2}=\frac{\pi}{8} d^{2}$.
Next, we have $\overline{R S}^{2}=(\overline{R T}+\overline{T S})^{2}=\overline{R T}^{2}+\overline{T S}^{2}+2 \overline{R T} \cdot \overline{T S}$, hence the area of the shaded region is $\pi / 8$ multiplied by $\overline{R S}^{2}-\overline{R T}^{2}-\overline{T S}^{2}=2 \overline{R T} \cdot \overline{T S}$, i.e., $\frac{\pi}{4} \overline{R T} \cdot \overline{T S}$. The area of a semicircle with radius $\overline{A T}$ is $\frac{\pi}{2} \overline{A T}^{2}$, hence their ratio is $2 \overline{R T} \cdot \overline{T S} / \overline{A T}^{2}$.

Finally, we use the well known fact that $\overline{A T}^{2}=\overline{R T} \cdot \overline{T S},{ }^{1}$ hence the ratio is $2 \overline{R T} \cdot \overline{T S} / \overline{A T}^{2}$ $=2 \overline{A T}^{2} / \overline{A T}^{2}=2$.

[^0]
[^0]: ${ }^{1}$ Draw $\overline{R A}$ and $\overline{S A}$. In the right triangle $R A S, \overline{A T}$ is perpendicular to $\overline{R S}$. The measure of the altitude on the hypotenuse of a right triangle is the mean proportional between the measures of the segments of the hypotenuse. Hence $\overline{A T}^{2}=\overline{R T} \cdot \overline{T S}$.

