NORTHWESTERN UNIVERSITY FIRST TRAINING/SELECTION TEST

NAME: _____

WILLIAM LOWELL PUTNAM MATHEMATICAL COMPETITION

Problem A1. Determine the sum of the coefficients of the polynomial that is obtained if we expand the expression $(1 + x - 3x^2)^{2005}$ and reduce like terms.

WILLIAM LOWELL PUTNAM MATHEMATICAL COMPETITION

Problem A2. The Fibonacci sequence $0, 1, 1, 2, 3, 5, 8, 13, \ldots$ is defined as a sequence whose two first terms are $F_0 = 0$, $F_1 = 1$, and each subsequent term is the sum of the two previous ones: $F_n = F_{n-1} + F_{n-2}$ (for $n \ge 2$). Prove that F_{10^k} is odd for every $k \ge 0$.

WILLIAM LOWELL PUTNAM MATHEMATICAL COMPETITION

Problem A3. Find the product $\prod_{n=2}^{2005} \left(1 - \frac{1}{n^2}\right)$.

WILLIAM LOWELL PUTNAM MATHEMATICAL COMPETITION

Problem A4. Find the minimum value of $f(x, y, z) = \sqrt{x + y + z}$ subject to the constrains $x, y, z > 0, \frac{1}{x} + \frac{1}{y} + \frac{1}{z} = 1.$

WILLIAM LOWELL PUTNAM MATHEMATICAL COMPETITION

Problem A5. Find the value of the following infinite tower of exponents:

 $\sqrt{2}^{\sqrt{2}^{\sqrt{2}^{\sqrt{2}}}}$

interpreted as the limit of the infinite sequence 1, $\sqrt{2}$, $\sqrt{2}^{\sqrt{2}}$, $\sqrt{2}^{\sqrt{2}^{\sqrt{2}}}$, ...,

NORTHWESTERN UNIVERSITY FIRST TRAINING/SELECTION TEST

NAME: _

WILLIAM LOWELL PUTNAM MATHEMATICAL COMPETITION

Problem A6. \overline{RS} is the diameter of a semicircle. Two smaller semicircles, \overline{RT} and \overline{TS} , are drawn on \overline{RS} , and their common internal tangent \overline{AT} intersects the large semicircle at A, as shown in the figure. Find the ratio of the area of a semicircle with radius \overline{AT} to the area of the shaded region.

