NAME: \qquad

WILLIAM LOWELL PUTNAM MATHEMATICAL COMPETITION

Problem A1. Determine the sum of the coefficients of the polynomial that is obtained if we expand the expression $\left(1+x-3 x^{2}\right)^{2005}$ and reduce like terms.

NAME: \qquad

WILLIAM LOWELL PUTNAM MATHEMATICAL COMPETITION

Problem A2. The Fibonacci sequence $0,1,1,2,3,5,8,13, \ldots$ is defined as a sequence whose two first terms are $F_{0}=0, F_{1}=1$, and each subsequent term is the sum of the two previous ones: $F_{n}=F_{n-1}+F_{n-2}$ (for $n \geq 2$). Prove that $F_{10^{k}}$ is odd for every $k \geq 0$.

NAME: \qquad
WILLIAM LOWELL PUTNAM MATHEMATICAL COMPETITION

Problem A3. Find the product $\prod_{n=2}^{2005}\left(1-\frac{1}{n^{2}}\right)$.

NAME: \qquad
WILLIAM LOWELL PUTNAM MATHEMATICAL COMPETITION

Problem A4. Find the minimum value of $f(x, y, z)=\sqrt{x+y+z}$ subject to the constrains $x, y, z>0, \frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1$.

NAME: \qquad
WILLIAM LOWELL PUTNAM MATHEMATICAL COMPETITION

Problem A5. Find the value of the following infinite tower of exponents:

$$
\sqrt{2}^{\sqrt{2} \sqrt{2} \sqrt{2}}
$$

interpreted as the limit of the infinite sequence $1, \sqrt{2}, \sqrt{2}^{\sqrt{2}}, \sqrt{2}^{\sqrt{2}^{\sqrt{2}}}, \ldots$,

NAME: \qquad

WILLIAM LOWELL PUTNAM MATHEMATICAL COMPETITION

Problem A6. $\overline{R S}$ is the diameter of a semicircle. Two smaller semicircles, $\overparen{R T}$ and $\overparen{T S}$, are drawn on $\overline{R S}$, and their common internal tangent $\overline{A T}$ intersects the large semicircle at A, as shown in the figure. Find the ratio of the area of a semicircle with radius $\overline{A T}$ to the area of the shaded region.

