NAME: \qquad

WILLIAM LOWELL PUTNAM MATHEMATICAL COMPETITION

Problem A1. Find the sum $\sum_{k=0}^{n}(3 k(k+1)+1)$, for $n \geq 1$.

- Answer:

The simplest way to solve this problem is to use the fact that the terms of the sum are differences of consecutive cubes:

$$
3 k(k+1)+1=3 k^{2}+3 k+1=(k+1)^{3}-k^{3},
$$

so the sum telescopes:

$$
\sum_{k=0}^{n}(3 k(k+1)+1)=\left(1^{3}-0^{3}\right)+\left(2^{3}-1^{3}\right)+\cdots+\left((n+1)^{3}-n^{3}\right)=(n+1)^{3}
$$

NAME: \qquad

WILLIAM LOWELL PUTNAM MATHEMATICAL COMPETITION

Problem A2. Given a fix positive integer n, find the minimum value of the following function:

$$
f(x)=x^{n}+x^{n-2}+x^{n-4}+\cdots+\frac{1}{x^{n-4}}+\frac{1}{x^{n-2}}+\frac{1}{x^{n}}
$$

for $x>0$.

- Answer:

We will prove that the minimum is $n+1$. To that end, we group the terms in the given expression as follows:

$$
f(x)=\left(x^{n}+\frac{1}{x^{n}}\right)+\left(x^{n-2}+\frac{1}{x^{n-2}}\right)+\left(x^{n-4}+\frac{1}{x^{n-4}}\right)+\cdots
$$

The last term may be 1 or $x+1 / x$ depending on the parity of n.
Next we use the inequality $y+1 / y \geq 2$ for $y>0$, which is easily derived from $(y-1)^{2} \geq 0$. So, each term between parenthesis is bounded below by 2 . If n is odd there are $(n+1) / 2$ of those terms. If n is even there are $n / 2$ terms of the form $x^{k}+1 / x^{k}$, plus an extra term equal to 1 . In any case we get $f(x) \geq n+1$. Finally we notice that the lower bound is attained at $\mathrm{x}=1$.

NAME: \qquad

WILLIAM LOWELL PUTNAM MATHEMATICAL COMPETITION

Problem A3. On a large, flat field, n people $(n>1)$ are positioned so that for each person the distances to all the other people are different. Each person holds a water pistol and at a given signal fires and hits the person who is closest. When n is odd, show that there is at least one person left dry.

- Answer:

We use induction.
First note that among all distances between any two people one must be minimum, and that two people placed a that minimum distance must shoot each other. For $n=3$ (base case) the third person will obviously stay dry, so this proves the statement for $n=3$.

For the induction step, we assume the statement to be true for a given odd $n>1$, and then we must prove it for $n+2$. As before, two people, placed at minimum distance must shoot each other. Call those two people A and B. Among the remaining n people, if nobody shoots A or B, we can apply the induction hypothesis to conclude that someone among them will be left dry. Otherwise, if someone shoots A or B, we will have a group of n people receiving less than n shots of water. By the Pigeonhole Principle, one of them will stay dray.

NAME: \qquad

WILLIAM LOWELL PUTNAM MATHEMATICAL COMPETITION

Problem A4. \mathbf{R} is the set of real numbers. For what $k \in \mathbf{R}$ can we find a continuous function $f: \mathbf{R} \rightarrow \mathbf{R}$ such that

$$
f(f(x))=k x^{9}
$$

for all $x \in \mathbf{R}$.

- Answer:

The answer is for any $k \geq 0$.
If $k \geq 0$, one function with the required property is $f(x)=k^{1 / 4} x^{3}$.
Next we must prove that there is no such function if $k<0$.
First note that for $k \neq 0$, the function $x \mapsto f(f(x))=k x^{9}$ is a bijection (or a 1-to-1 correspondence) from \mathbf{R} to \mathbf{R}. Consequently f itself is a (continuous) bijection from \mathbf{R} to \mathbf{R}. A continuous bijection from \mathbf{R} to \mathbf{R} must be monotonous-either increasing or decreasing. But whether f is increasing or decreasing, $x \mapsto f(f(x))$ will be increasing, so k must be positive.

NAME: \qquad

WILLIAM LOWELL PUTNAM MATHEMATICAL COMPETITION

Problem A5. Show that for any positive integer n, there exists a positive multiple of n that contains only the digits 7 and 0 .

- Answer:

Method 1: This can be solved by the Pigeonhole Principle. Look at the infinite sequence $a_{1}=7, a_{2}=77, a_{3}=777, a_{4}=7777, \ldots, a_{k}=7\left(10^{k}-1\right) / 9, \ldots$ Then look at the sequence of residues modulo n of its elements. Since there are n residues modulo n, eventually two of them will coincide: $a_{r} \equiv a_{s}(\bmod n), 0<r<s$. Then $a_{s}-a_{r}$ will be a multiple of n containing only the digits 7 and 0 (in fact consisting of a string of 7's followed by a string of 0's.)

Method 2: We proceed as above, but using instead the sequence $a_{0}=7, a_{1}=70, a_{2}=700$, $a_{3}=7000, \ldots, a_{k}=7 \cdot 10^{k}, \ldots$ The first n^{2} terms will be distributed among n residual classes modulo n, so in some class there must be at least n terms: $a_{k_{i}} \equiv a(\bmod n), i=1,2, \ldots, n$. their sum verifies $a_{k_{1}}+a_{k_{2}}+\cdots+a_{k_{n}} \equiv n a \equiv 0(\bmod n)$, so it is a multiple of n. And obviously contains only the digits 7 and 0 , as required.

NAME: \qquad

WILLIAM LOWELL PUTNAM MATHEMATICAL COMPETITION

Problem A6. Let u_{n} be the number of symmetric $n \times n$-matrices whose elements are all 0 's and 1's with exactly one 1 in each row. Let $u_{0}=1$. Prove that

$$
u_{n+1}=u_{n}+n u_{n-1}
$$

and

$$
\sum_{n=0}^{\infty} u_{n} \frac{x^{n}}{n!}=e^{x+x^{2} / 2}
$$

- Answer:

The recurrence relation can be obtained as follows. For $n=0$ and $n=1$ it can be checked directly. If $n \geq 2$, the $(n+1) \times(n+1)$ matrices of the kind indicated above can be divided into two classes, depending on the column position of the " 1 " in their last row:

1. The " 1 " in their last row is in the last column.
2. The " 1 " in their last row is in column k, with $1 \leq k \leq n$.

In case 1 , if we eliminate the last row and column, we get an $n \times n$ matrix as indicated above. There are u_{n} such matrices. In case 2 , if we remove the last row and row and also the k th row and column, we get an $(n-1) \times(n-1)$ matrix as indicated above. There are u_{n-1} such matrices. And k can have n possible values.

Once we have established the recurrence, we can justify the equation by differentiating both sides and checking that they satisfy the same differential equation:

$$
f^{\prime}(x)=(1+x) f(x)
$$

with the same initial condition $f(0)=1$.

