NAME:

Problem A1. Find the sum $\sum_{k=0}^{n}(3 k(k+1)+1)$, for $n \geq 1$.

NAME:
WILLIAM LOWELL PUTNAM MATHEMATICAL COMPETITION

Problem A2. Given a fix positive integer n, find the minimum value of the following function:

$$
f(x)=x^{n}+x^{n-2}+x^{n-4}+\cdots+\frac{1}{x^{n-4}}+\frac{1}{x^{n-2}}+\frac{1}{x^{n}}
$$

for $x>0$.

NAME:

WILLIAM LOWELL PUTNAM MATHEMATICAL COMPETITION

Problem A3. On a large, flat field, n people $(n>1)$ are positioned so that for each person the distances to all the other people are different. Each person holds a water pistol and at a given signal fires and hits the person who is closest. When n is odd, show that there is at least one person left dry.

NAME:

WILLIAM LOWELL PUTNAM MATHEMATICAL COMPETITION

Problem A4. \mathbf{R} is the set of real numbers. For what $k \in \mathbf{R}$ can we find a continuous function $f: \mathbf{R} \rightarrow \mathbf{R}$ such that

$$
f(f(x))=k x^{9}
$$

for all $x \in \mathbf{R}$.

NAME:

WILLIAM LOWELL PUTNAM MATHEMATICAL COMPETITION

Problem A5. Show that for any positive integer n, there exists a positive multiple of n that contains only the digits 7 and 0 .

NAME:

WILLIAM LOWELL PUTNAM MATHEMATICAL COMPETITION

Problem A6. Let u_{n} be the number of symmetric $n \times n$-matrices whose elements are all 0 's and 1's with exactly one 1 in each row. Let $u_{0}=1$. Prove that

$$
u_{n+1}=u_{n}+n u_{n-1}
$$

and

$$
\sum_{n=0}^{\infty} u_{n} \frac{x^{n}}{n!}=e^{x+x^{2} / 2}
$$

