WILLIAM LOWELL PUTNAM MATHEMATICAL COMPETITION

Problem A1. Find the sum $\sum_{k=0}^{n} (3k(k+1)+1)$, for $n \ge 1$.

WILLIAM LOWELL PUTNAM MATHEMATICAL COMPETITION

Problem A2. Given a fix positive integer n, find the minimum value of the following function:

 $f(x) = x^{n} + x^{n-2} + x^{n-4} + \dots + \frac{1}{x^{n-4}} + \frac{1}{x^{n-2}} + \frac{1}{x^{n-4}}$

for x > 0.

NORTHWESTERN UNIVERSITY TRAINING/SELECTION TEST

NAME:

WILLIAM LOWELL PUTNAM MATHEMATICAL COMPETITION

Problem A3. On a large, flat field, n people (n > 1) are positioned so that for each person the distances to all the other people are different. Each person holds a water pistol and at a given signal fires and hits the person who is closest. When n is odd, show that there is at least one person left dry.

WILLIAM LOWELL PUTNAM MATHEMATICAL COMPETITION

Problem A4. R is the set of real numbers. For what $k \in \mathbf{R}$ can we find a continuous function $f: \mathbf{R} \to \mathbf{R}$ such that

$$f(f(x)) = kx^9$$

for all $x \in \mathbf{R}$.

WILLIAM LOWELL PUTNAM MATHEMATICAL COMPETITION

Problem A5. Show that for any positive integer n, there exists a positive multiple of n that contains only the digits 7 and 0.

NAME:

WILLIAM LOWELL PUTNAM MATHEMATICAL COMPETITION

Problem A6. Let u_n be the number of symmetric $n \times n$ -matrices whose elements are all 0's and 1's with exactly one 1 in each row. Let $u_0 = 1$. Prove that

$$u_{n+1} = u_n + nu_{n-1}$$

$$\sum_{n=0}^{\infty} u_n \frac{x^n}{n!} = e^{x + x^2/2} \,.$$