## Putnam Selection Test 2008 (Answers)

1. Answer: 336. If $N=a b c, a \leq b \leq c$, and $a+b=c$, we have $a b c=6(a+b+c)$, $a b(a+b)=12(a+b), a b=12$. Possible values are $(a, b)=(1,12),(2,6),(3,4)$, so $N=$ $1 \cdot 12 \cdot(1+12)=156, N=2 \cdot 6 \cdot(2+6)=96, N=3 \cdot 4 \cdot(3+4)=84$, and the sum is $156+96+84=336$.
2. Answer: 348. Write the sequences $a_{n}=a_{1}+(n-1) d, b_{n}=b_{1}+(n-1) d$, so $a_{n} b_{n}=a_{1} b_{1}+$ $(n-1)\left(a_{1} d^{\prime}+b_{1} d\right)+(n-1)^{2} d d^{\prime}$. Hence, $\Delta\left(a_{n} b_{n}\right)=a_{n+1} b_{n+1}-a_{n} b_{n}=a_{1} d^{\prime}+b_{1} d+(2 n-1) d d^{\prime}$ is an arithmetic sequence of difference $2 d d^{\prime}=(1848-1716)-(1716-1440)=-144$. Hence the sequence of differences of $a_{n} b_{n}$ is $276,132,-12,-156,-300,-444,-588, \ldots$, and from here we get $a_{n} b_{n}=\{1440,1716,1848,1836,1680,1380,936,348, \ldots\}$.
3. Answer: $103 / 280$. General number of derangements is $n!(1-1+1 / 2!-1 / 3!+1 / 4$ ! $\left.1 / 5!+1 / 6!-\ldots+(-1)^{n} / n!\right)$ by inclusion exclusion.
4. Answer: 0 . The substitution $x \rightarrow 1 / x$ makes $I=-I$.
5. Answer: $A$. Integration by parts, $\frac{\sin x}{x} \rightarrow \frac{1-\cos x}{x^{2}}$. But $1-\cos x=2 \sin ^{2}(x / 2)$.
6. Answer: 16. Every number less than 16 can be written that way. If $16=x^{2}-p$, then $p=x^{2}-16=(x-4)(x+4)$, so $(x-4)=1$, yet then $p=9$ is not prime.
7. Answer: 18. If $S_{1}=\alpha+\beta+\gamma, S_{2}=\alpha^{2}+\beta^{2}+\gamma^{2}$, $S_{3}=\alpha^{3}+\beta^{3}+\gamma^{3}, P=\alpha \beta \gamma$, then by algebra $S_{1}^{3}=S_{3}+3\left(S_{1} S_{2}-S_{3}\right)+6 P$, and from here we get $6 P=7^{3}-19-3 \cdot(7 \cdot 13-19)=108$, $P=18$.
8. Answer: 296. Since $n=(n-2)+2$, all the $n$ are at most 3. On the other hand, $6=3+3=2+2+2$, and $9>8$. So write $100=32 \cdot 3+2 \cdot 2$, and the answer is $32 \cdot 3^{2}+2 \cdot 2^{2}=296$.
9. Answer: $2009^{1 / 3}-1$. We have $x^{3}-y^{3}=(x-y)\left(x^{2}+x y+y^{2}\right)$, so $1 /\left(x^{2}+x y+y^{2}\right)=$ $(x-y) /\left(x^{3}-y^{3}\right)$. If $x^{3}=n+1$, and $y^{3}=n$, then $1 /\left(x^{2}+x y+y^{2}\right)=x-y$. Thus the sum is $\sum_{n=1}^{2008}\left((n+1)^{1 / 3}-n^{1 / 3}\right)=2009^{1 / 3}-1$.
10. Answer: $\{7,1\}$. We have that $\frac{1+\sqrt{5}}{2}=\phi$ and $\frac{1-\sqrt{5}}{2}=-\frac{1}{\phi}$ are the roots of the polynomial $x^{2}-x-1$, and for $n>1, f(n)=\left(\frac{1+\sqrt{5}}{2}\right)^{n}+\left(\frac{1-\sqrt{5}}{2}\right)^{n}$, and verifies the recurrence $f(n+2)=$ $f(n+1)+f(n)$. Hence $f(n)=\{2,3,4,7,11,18,29, \ldots\}$ Lucas numbers. So, mod 10, we get:

$$
2,3,4,7,1,8,9,7,6,3,9,2,1,3,4,7,1,8,9,7,6,3,9,2,1, \ldots
$$

so we see that it repeats in cycles of 12 . So $f(2004)=2, f(2005)=1, f(2006)=3$, $f(2007)=4, f(2008)=7, f(2009)=1$.
11. Answer: 98. I claim that $2 y_{n}<x_{n+2}<y_{n+1}$ for $n>0$. Proof by induction. For $n=2$, we get $2 \cdot 3<16<27$. Now $x_{n+3}=2^{x_{n+2}}<3^{x_{n+2}}<3^{y_{n+1}}=y_{n+2}$, and $x_{n+3}=2^{x_{n+2}}>$ $2^{2 y_{n}}=4^{y_{n}}=3^{y_{n}}(4 / 3)^{y_{n}}=y_{n+1}(4 / 3)^{y_{n}}>2 y_{n+1}$, if $y_{n} \geq 3$.

